Em sáb., 2 de mar. de 2024 às 15:28, Claudio Buffara
<claudio.buff...@gmail.com> escreveu:
>
> Isso só perguntando pra quem elaborou a questão.
> Mas a ideia pode ter surgido quando, ao manipular expressões desse tipo, a 
> pessoa notou que:
> 9r + 5r +4(2r +3s) = 17(r + s)
> e isso a fez pensar no enunciado.

Eu me lembro de ter visto expressões semelhantes com outros módulos
(primos, por que será?) faz muito tempo.
Para mim o mais interessante é descobrir equivalências.
Por exemplo, se Ax+By é múltiplo de 17, quem seria C tal que x-Cy é
múltiplo de 7? Isso é basicamente uma classe de equivalência.

Na verdade daria para fazer o contrário:
se C não é múltiplo de 17, então Kx+y é múltiplo de 17 se e somente se
(CK mod 17)x+(C mod 17)y também for.
Daí é só reduzir CK e C módulo 17.

Com isso dá para gerar problemas interessantes:

- Se x+10y é múltiplo de 17, então 9x+90y, ou 9x+5y, são múltiplos de
y (e vice-versa)
- Se x+10y é múltiplo de 17, então 2x+20y, ou 2x+3y, são múltiplos de
y (e vice-versa)

Logo,
- Se 9x+5y é múltiplo de 17, então 2x+3y é múltiplo de y (e vice-versa).

>
>
> On Sat, Mar 2, 2024 at 12:37 PM Marcone Borges <marconeborge...@hotmail.com> 
> wrote:
>>
>> Sendo r e s inteiros, mostre que 9r +5s divide 17 se, e somente se, 2r + 3s 
>> divide 17.
>> De 9r + 5s ==0(mod 17), assim como de 2r + 3s ==0(mod17), segue que
>> r==7s (mod17). Daí sai a resposta.
>> Ou podemos mostrar o que foi pedido usando 9r + 5r +4(2r +3s) = 17(r + s)
>> Mas, do ponto de vista de quem elaborou a questão, por que vincular essas 
>> expressões ao fato de que quando uma for um múltiplo de 17 a outra também 
>> será?
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================

Responder a