Hi,

I added this lines at the end of boxplot.m
  % Distribute handles
  nq = 1:size(quartile_x,2);
  hs.box = h(nq);
  nw = nq(end) + [1:2*size(whisker_x,2)];
  hs.whisker = h(nw);
  nm = nw(end)+ [1:size(median_x,2)];
  hs.median = h(nm);
  no = nm(end) + [1:size(outliers_y,2)];
  hs.outliers = h(no);
  no2 = no(end) + [1:size(outliers2_y,2)];
  hs.outliers2 = h(no2);

and the function now returns a second argument with the handles to the
graphics elements. This allows configuration of the visualization. In
particular I wanted to remove outliers (which I thought was possible
by input arguments).

Shall I add this to the repository?

-- 
M. Sc. Juan Pablo Carbajal
-----
PhD Student
University of Zürich
http://ailab.ifi.uzh.ch/carbajal/

------------------------------------------------------------------------------
Virtualization & Cloud Management Using Capacity Planning
Cloud computing makes use of virtualization - but cloud computing 
also focuses on allowing computing to be delivered as a service.
http://www.accelacomm.com/jaw/sfnl/114/51521223/
_______________________________________________
Octave-dev mailing list
Octave-dev@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/octave-dev

Reply via email to