On 03.09.2012, at 10:39, Rafael Laboissiere <raf...@laboissiere.net> wrote:

> * Rafael Laboissiere <raf...@laboissiere.net> [2012-08-30 23:47]:
> 
>> * Carnë Draug <carandraug+...@gmail.com> [2012-08-27 16:43]:
>> 
>>> a new release of control package is out, version 2.3.53, by Lukas Reichlin.
>> 
>> In exercising the tests in inst/@lti/minreal.m, I got the error below.
>> Is it normal?
>> 
>> I am running octave 3.6.2 on a Debian unstable system.
>> 
>> [snip]
> 
> Testing ltimodels and bstmodred also yield errors, cf below.
> 
> Rafael
> 
> 
> #############################################################################
> 
> [ltimodels]
>  ***** assert (ac, ac_e, 1e-4);
> !!!!! test failed
> assert (ac,ac_e,1e-4) expected
>   0.00000   0.00000   0.00000   0.00000  -1.26270   0.43340   0.46660
>   0.00000   2.00000   0.00000  -3.74170  -0.85200   0.29240  -0.43420
>   0.00000   0.00000   1.78620   0.37800  -0.26510  -0.77230   0.00000
>   0.00000   0.00000   0.00000   3.74170   0.85200  -0.29240   0.43420
>   0.00000   0.00000   0.00000   0.00000  -1.55400   0.53340   0.57420
>   0.00000   0.00000   0.00000   0.00000  -0.65330   0.22420   0.24140
>   0.00000   0.00000   0.00000   0.00000  -0.58920   0.20220   0.21770
> but got
>   0.00000  -0.00000  -0.00000   0.00000   1.35857  -0.38229  -0.09025
>   0.00000   2.00000   0.00000  -3.74166   0.87321   0.48735   0.00000
>   0.00000   0.00000   1.78619   0.37796  -0.03591   0.06435  -0.81316
>   0.00000   0.00000   0.00000   3.74166  -0.87321  -0.48735  -0.00000
>   0.00000   0.00000   0.00000   0.00000   1.84482  -0.51912  -0.12255
>   0.00000   0.00000   0.00000   0.00000  -0.51537   0.14502   0.03424
>   0.00000   0.00000   0.00000   0.00000  -0.14986   0.04217   0.00996
> maximum absolute error 3.39882 exceeds tolerance 0.0001
> shared variables 
>  scalar structure containing the fields:
> 
>    ac =
> 
>       0.00000  -0.00000  -0.00000   0.00000   1.35857  -0.38229  -0.09025
>       0.00000   2.00000   0.00000  -3.74166   0.87321   0.48735   0.00000
>       0.00000   0.00000   1.78619   0.37796  -0.03591   0.06435  -0.81316
>       0.00000   0.00000   0.00000   3.74166  -0.87321  -0.48735  -0.00000
>       0.00000   0.00000   0.00000   0.00000   1.84482  -0.51912  -0.12255
>       0.00000   0.00000   0.00000   0.00000  -0.51537   0.14502   0.03424
>       0.00000   0.00000   0.00000   0.00000  -0.14986   0.04217   0.00996
> 
>    ec =
> 
>       1.83254   1.00000   2.37525   0.00000   0.97073  -1.73928  -0.18050
>      -0.48868   0.00000   0.37702  -0.53452   0.02539  -0.04550   0.57499
>       0.17277  -0.00000  -0.13330  -1.13389   0.01796  -0.03217   0.40658
>       0.00000   0.00000   0.00000  -0.00000  -0.87321  -0.48735   0.00000
>       0.00000   0.00000   0.00000   0.00000   1.00048  -0.00173   0.02189
>       0.00000   0.00000   0.00000   0.00000   0.00000   1.00155  -0.03914
>       0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   1.22226
> 
>    bc =
> 
>       1.00000   2.00000   3.00000
>       2.00000   1.00000   0.00000
>       0.00000   0.00000   0.00000
>       0.00000   0.00000   0.00000
>       0.00000   0.00000   0.00000
>       0.00000   0.00000   0.00000
>       0.00000   0.00000   0.00000
> 
>    cc =
> 
>     Columns 1 through 5:
> 
>       1.5181e-16   1.0000e+00  -9.6723e-17   1.8014e-16   1.3586e+00
>      -3.6651e-01   9.6902e-18  -9.8026e-01  -1.6036e+00   2.5394e-02
> 
>     Columns 6 and 7:
> 
>      -3.8229e-01  -9.0251e-02
>      -4.5500e-02   5.7499e-01
> 
>    q =
> 
>       0.00000   1.00000  -0.00000   0.00000   0.00000   0.00000   0.00000
>       0.00000  -0.00000   0.70711   0.00000  -0.03807   0.06808  -0.70279
>       0.00000  -0.00000  -0.00000  -0.00000   0.87278   0.48811   0.00000
>       0.00000   0.00000   0.00000  -1.00000  -0.00000  -0.00000  -0.00000
>       0.00000   0.00000  -0.00000   0.00000   0.48513  -0.86746  -0.11031
>       0.00000  -0.00000   0.70711   0.00000   0.03807  -0.06808   0.70279
>       1.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000
> 
>    z =
> 
>       0.00000   1.00000   0.00000   0.00000   0.00000   0.00000   0.00000
>       0.61085  -0.00000   0.79175   0.00000   0.00000   0.00000   0.00000
>      -0.48868   0.00000   0.37702  -0.53452   0.02539  -0.04550   0.57499
>      -0.00000   0.00000   0.00000  -0.00000   0.48536  -0.86964  -0.09025
>      -0.61085   0.00000   0.47128   0.26726  -0.02539   0.04550  -0.57499
>       0.12217  -0.00000  -0.09426  -0.80178  -0.02539   0.04550  -0.57499
>       0.00000  -0.00000  -0.00000   0.00000   0.87321   0.48735   0.00000
> 
>    ncont =  3
>    ac_e =
> 
>       0.00000   0.00000   0.00000   0.00000  -1.26270   0.43340   0.46660
>       0.00000   2.00000   0.00000  -3.74170  -0.85200   0.29240  -0.43420
>       0.00000   0.00000   1.78620   0.37800  -0.26510  -0.77230   0.00000
>       0.00000   0.00000   0.00000   3.74170   0.85200  -0.29240   0.43420
>       0.00000   0.00000   0.00000   0.00000  -1.55400   0.53340   0.57420
>       0.00000   0.00000   0.00000   0.00000  -0.65330   0.22420   0.24140
>       0.00000   0.00000   0.00000   0.00000  -0.58920   0.20220   0.21770
> 
>    ec_e =
> 
>      -1.83250   1.00000   2.37520   0.00000  -0.82140   0.28190   1.80160
>       0.48870   0.00000   0.37700  -0.53450   0.18740   0.54610   0.00000
>      -0.17280   0.00000  -0.13330  -1.13390   0.13250   0.38610   0.00000
>       0.00000   0.00000   0.00000   0.00000   0.85200  -0.29240   0.43420
>       0.00000   0.00000   0.00000   0.00000  -1.02600  -0.14960   0.00000
>       0.00000   0.00000   0.00000   0.00000   0.00000   1.19370   0.00000
>       0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   1.00000
> 
>    bc_e =
> 
>       1   2   3
>       2   1   0
>       0   0   0
>       0   0   0
>       0   0   0
>       0   0   0
>       0   0   0
> 
>    cc_e =
> 
>       0.00000   1.00000   0.00000   0.00000  -1.26270   0.43340   0.46660
>       0.36650   0.00000  -0.98030  -1.60360   0.18740   0.54610   0.00000
> 
>    q_e =
> 
>       0.00000   1.00000   0.00000   0.00000   0.00000   0.00000   0.00000
>       0.00000   0.00000   0.70710   0.00000   0.27400  -0.65190   0.00000
>       0.00000   0.00000   0.00000   0.00000   0.83040   0.34910  -0.43420
>       0.00000   0.00000   0.00000  -1.00000   0.00000   0.00000   0.00000
>       0.00000   0.00000   0.00000   0.00000   0.40030   0.16830   0.90080
>       0.00000   0.00000   0.70710   0.00000  -0.27400   0.65190   0.00000
>       1.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000
> 
>    z_e =
> 
>       0.00000   1.00000   0.00000   0.00000   0.00000   0.00000   0.00000
>      -0.61080   0.00000   0.79170   0.00000   0.00000   0.00000   0.00000
>       0.48870   0.00000   0.37700  -0.53450   0.18740   0.54610   0.00000
>       0.00000   0.00000   0.00000   0.00000  -0.41070   0.14100   0.90080
>       0.61080   0.00000   0.47130   0.26730  -0.18740  -0.54610   0.00000
>      -0.12220   0.00000  -0.09430  -0.80180  -0.18740  -0.54610   0.00000
>       0.00000   0.00000   0.00000   0.00000  -0.85200   0.29240  -0.43420
> 
>    ncont_e =  3
> 
> [bstmodred]
>  ***** assert (Mo, Me, 1e-4);
> !!!!! test failed
> assert (Mo,Me,1e-4) expected
>   1.27290   0.00000   6.59470   0.00000  -3.42290   0.13310  -0.13310
>   0.00000   0.81690   0.00000   2.48210   0.00000  -0.08620  -0.08620
>  -2.98890   0.00000  -2.90280   0.00000  -0.36920  -2.67770   2.67770
>   0.00000  -3.39210   0.00000  -3.11260   0.00000  -3.57670  -3.57670
>  -1.47670   0.00000  -2.03390   0.00000  -0.61070  -2.30330   2.30330
>  -0.69070  -0.68820   0.07790   0.09580  -0.00380   0.00000   0.00000
>   0.06760   0.00000   0.65320   0.00000  -0.75220   0.00000   0.00000
>   0.69070  -0.68820  -0.07790   0.09580   0.00380   0.00000   0.00000
> but got
>   1.27295   0.00000  -6.59466   0.00000  -3.42287  -0.13307   0.13307
>  -0.00000   0.81688   0.00000   2.48210   0.00000   0.08620   0.08620
>   2.98890  -0.00000  -2.90283   0.00000   0.36919  -2.67775   2.67775
>  -0.00000  -3.39208  -0.00000  -3.11263   0.00000   3.57669   3.57669
>  -1.47666   0.00000   2.03393   0.00000  -0.61070   2.30328  -2.30328
>   0.69073   0.68823   0.07791  -0.09576   0.00376   0.00000   0.00000
>  -0.06755  -0.00000   0.65316   0.00000   0.75223   0.00000   0.00000
>  -0.69073   0.68823  -0.07791  -0.09576  -0.00376   0.00000   0.00000
> maximum absolute error 13.1894 exceeds tolerance 0.0001
> shared variables 
>  scalar structure containing the fields:
> 
>    Mo =
> 
>       1.27295   0.00000  -6.59466   0.00000  -3.42287  -0.13307   0.13307
>      -0.00000   0.81688   0.00000   2.48210   0.00000   0.08620   0.08620
>       2.98890  -0.00000  -2.90283   0.00000   0.36919  -2.67775   2.67775
>      -0.00000  -3.39208  -0.00000  -3.11263   0.00000   3.57669   3.57669
>      -1.47666   0.00000   2.03393   0.00000  -0.61070   2.30328  -2.30328
>       0.69073   0.68823   0.07791  -0.09576   0.00376   0.00000   0.00000
>      -0.06755  -0.00000   0.65316   0.00000   0.75223   0.00000   0.00000
>      -0.69073   0.68823  -0.07791  -0.09576  -0.00376   0.00000   0.00000
> 
>    Me =
> 
>       1.27290   0.00000   6.59470   0.00000  -3.42290   0.13310  -0.13310
>       0.00000   0.81690   0.00000   2.48210   0.00000  -0.08620  -0.08620
>      -2.98890   0.00000  -2.90280   0.00000  -0.36920  -2.67770   2.67770
>       0.00000  -3.39210   0.00000  -3.11260   0.00000  -3.57670  -3.57670
>      -1.47670   0.00000  -2.03390   0.00000  -0.61070  -2.30330   2.30330
>      -0.69070  -0.68820   0.07790   0.09580  -0.00380   0.00000   0.00000
>       0.06760   0.00000   0.65320   0.00000  -0.75220   0.00000   0.00000
>       0.69070  -0.68820  -0.07790   0.09580   0.00380   0.00000   0.00000
> 
>    Info =
> 
>      scalar structure containing the fields:
> 
>        n =  7
>        ns =  7
>        hsv =
> 
>           0.880263
>           0.850619
>           0.803778
>           0.449390
>           0.397312
>           0.021408
>           0.020850
> 
>        nu = 0
>        nr =  5
> 
>    HSVe =
> 
>       0.880300
>       0.850600
>       0.803800
>       0.449400
>       0.397300
>       0.021400
>       0.020900

Hi Rafael,

You can check whether the observed and expected results are equivalent 
state-space models (i.e. state-transformation, see command prescale for 
formulae). This can be done, e.g., by inspection of the Hankel singular values 
(command hsvd), time response (step, impulse) or frequency response (sigma).
If they are the same, there should be nothing to worry about. If you want the 
same results, use Reference BLAS (and LAPACK) from www.netlib.org instead of 
ATLAS which you are probably using. The SLICOT authors recommend the use of the 
reference implementations. Correct results are more important than minor speed 
advantages of automatically tuned linear algebra software, aren't they? :-)

Regards,
Lukas


------------------------------------------------------------------------------
Live Security Virtual Conference
Exclusive live event will cover all the ways today's security and 
threat landscape has changed and how IT managers can respond. Discussions 
will include endpoint security, mobile security and the latest in malware 
threats. http://www.accelacomm.com/jaw/sfrnl04242012/114/50122263/
_______________________________________________
Octave-dev mailing list
Octave-dev@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/octave-dev

Reply via email to