Here the /usr/include/pthread.h:

    /* Copyright (C) 2002-2016 Free Software Foundation, Inc. This file is part 
of the GNU C
    Library. The GNU C Library is free software; you can redistribute it and/or 
modify it under the
    terms of the GNU Lesser General Public License as published by the Free 
Software Foundation;
    either version 2.1 of the License, or (at your option) any later version. 
The GNU C Library is
    distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; 
without even the
    implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 
See the GNU Lesser
    General Public License for more details. You should have received a copy of 
the GNU Lesser
    General Public License along with the GNU C Library; if not, see 
<http://www.gnu.org/licenses/>.
    */ #ifndef _PTHREAD_H #define _PTHREAD_H 1 #include <features.h> #include 
<endian.h> #include
    <sched.h> #include <time.h> #include <bits/pthreadtypes.h> #include 
<bits/setjmp.h> #include
    <bits/wordsize.h> /* Detach state. */ enum { PTHREAD_CREATE_JOINABLE, 
#define
    PTHREAD_CREATE_JOINABLE PTHREAD_CREATE_JOINABLE PTHREAD_CREATE_DETACHED 
#define
    PTHREAD_CREATE_DETACHED PTHREAD_CREATE_DETACHED }; /* Mutex types. */ enum {
    PTHREAD_MUTEX_TIMED_NP, PTHREAD_MUTEX_RECURSIVE_NP, 
PTHREAD_MUTEX_ERRORCHECK_NP,
    PTHREAD_MUTEX_ADAPTIVE_NP #if defined __USE_UNIX98 || defined 
__USE_XOPEN2K8 ,
    PTHREAD_MUTEX_NORMAL = PTHREAD_MUTEX_TIMED_NP, PTHREAD_MUTEX_RECURSIVE =
    PTHREAD_MUTEX_RECURSIVE_NP, PTHREAD_MUTEX_ERRORCHECK = 
PTHREAD_MUTEX_ERRORCHECK_NP,
    PTHREAD_MUTEX_DEFAULT = PTHREAD_MUTEX_NORMAL #endif #ifdef __USE_GNU /* For 
compatibility. */ ,
    PTHREAD_MUTEX_FAST_NP = PTHREAD_MUTEX_TIMED_NP #endif }; #ifdef 
__USE_XOPEN2K /* Robust mutex or
    not flags. */ enum { PTHREAD_MUTEX_STALLED, PTHREAD_MUTEX_STALLED_NP = 
PTHREAD_MUTEX_STALLED,
    PTHREAD_MUTEX_ROBUST, PTHREAD_MUTEX_ROBUST_NP = PTHREAD_MUTEX_ROBUST }; 
#endif #if defined
    __USE_POSIX199506 || defined __USE_UNIX98 /* Mutex protocols. */ enum { 
PTHREAD_PRIO_NONE,
    PTHREAD_PRIO_INHERIT, PTHREAD_PRIO_PROTECT }; #endif #ifdef 
__PTHREAD_MUTEX_HAVE_PREV # define
    PTHREAD_MUTEX_INITIALIZER \ { { 0, 0, 0, 0, 0, __PTHREAD_SPINS, { 0, 0 } } 
} # ifdef __USE_GNU #
    define PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP \ { { 0, 0, 0, 0, 
PTHREAD_MUTEX_RECURSIVE_NP,
    __PTHREAD_SPINS, { 0, 0 } } } # define 
PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP \ { { 0, 0, 0, 0,
    PTHREAD_MUTEX_ERRORCHECK_NP, __PTHREAD_SPINS, { 0, 0 } } } # define
    PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP \ { { 0, 0, 0, 0, 
PTHREAD_MUTEX_ADAPTIVE_NP,
    __PTHREAD_SPINS, { 0, 0 } } } # endif #else # define 
PTHREAD_MUTEX_INITIALIZER \ { { 0, 0, 0, 0,
    0, { __PTHREAD_SPINS } } } # ifdef __USE_GNU # define 
PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP \ {
    { 0, 0, 0, PTHREAD_MUTEX_RECURSIVE_NP, 0, { __PTHREAD_SPINS } } } # define
    PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP \ { { 0, 0, 0, 
PTHREAD_MUTEX_ERRORCHECK_NP, 0, {
    __PTHREAD_SPINS } } } # define PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP \ { { 
0, 0, 0,
    PTHREAD_MUTEX_ADAPTIVE_NP, 0, { __PTHREAD_SPINS } } } # endif #endif /* 
Read-write lock types.
    */ #if defined __USE_UNIX98 || defined __USE_XOPEN2K enum { 
PTHREAD_RWLOCK_PREFER_READER_NP,
    PTHREAD_RWLOCK_PREFER_WRITER_NP, 
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP,
    PTHREAD_RWLOCK_DEFAULT_NP = PTHREAD_RWLOCK_PREFER_READER_NP }; /* Define
    __PTHREAD_RWLOCK_INT_FLAGS_SHARED to 1 if pthread_rwlock_t has the shared 
field. All 64-bit
    architectures have the shared field in pthread_rwlock_t. */ #ifndef
    __PTHREAD_RWLOCK_INT_FLAGS_SHARED # if __WORDSIZE == 64 # define
    __PTHREAD_RWLOCK_INT_FLAGS_SHARED 1 # endif #endif /* Read-write lock 
initializers. */ # define
    PTHREAD_RWLOCK_INITIALIZER \ { { 0, 0, 0, 0, 0, 0, 0, 0, 
__PTHREAD_RWLOCK_ELISION_EXTRA, 0, 0 }
    } # ifdef __USE_GNU # ifdef __PTHREAD_RWLOCK_INT_FLAGS_SHARED # define
    PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP \ { { 0, 0, 0, 0, 0, 0, 
0, 0,
    __PTHREAD_RWLOCK_ELISION_EXTRA, 0, \ 
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP } } # else #
    if __BYTE_ORDER == __LITTLE_ENDIAN # define 
PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP \
    { { 0, 0, 0, 0, 0, 0, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP, \ 0,
    __PTHREAD_RWLOCK_ELISION_EXTRA, 0, 0 } } # else # define
    PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP \ { { 0, 0, 0, 0, 0, 0, 
0, 0, 0,
    PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP,\ 0 } } # endif # endif # 
endif #endif /* Unix98 or
    XOpen2K */ /* Scheduler inheritance. */ enum { PTHREAD_INHERIT_SCHED, 
#define
    PTHREAD_INHERIT_SCHED PTHREAD_INHERIT_SCHED PTHREAD_EXPLICIT_SCHED #define
    PTHREAD_EXPLICIT_SCHED PTHREAD_EXPLICIT_SCHED }; /* Scope handling. */ enum 
{
    PTHREAD_SCOPE_SYSTEM, #define PTHREAD_SCOPE_SYSTEM PTHREAD_SCOPE_SYSTEM 
PTHREAD_SCOPE_PROCESS
    #define PTHREAD_SCOPE_PROCESS PTHREAD_SCOPE_PROCESS }; /* Process shared or 
private flag. */
    enum { PTHREAD_PROCESS_PRIVATE, #define PTHREAD_PROCESS_PRIVATE 
PTHREAD_PROCESS_PRIVATE
    PTHREAD_PROCESS_SHARED #define PTHREAD_PROCESS_SHARED 
PTHREAD_PROCESS_SHARED }; /* Conditional
    variable handling. */ #define PTHREAD_COND_INITIALIZER { { 0, 0, 0, 0, 0, 
(void *) 0, 0, 0 } }
    /* Cleanup buffers */ struct _pthread_cleanup_buffer { void (*__routine) 
(void *); /* Function
    to call. */ void *__arg; /* Its argument. */ int __canceltype; /* Saved 
cancellation type. */
    struct _pthread_cleanup_buffer *__prev; /* Chaining of cleanup functions. 
*/ }; /* Cancellation
    */ enum { PTHREAD_CANCEL_ENABLE, #define PTHREAD_CANCEL_ENABLE 
PTHREAD_CANCEL_ENABLE
    PTHREAD_CANCEL_DISABLE #define PTHREAD_CANCEL_DISABLE 
PTHREAD_CANCEL_DISABLE }; enum {
    PTHREAD_CANCEL_DEFERRED, #define PTHREAD_CANCEL_DEFERRED 
PTHREAD_CANCEL_DEFERRED
    PTHREAD_CANCEL_ASYNCHRONOUS #define PTHREAD_CANCEL_ASYNCHRONOUS 
PTHREAD_CANCEL_ASYNCHRONOUS };
    #define PTHREAD_CANCELED ((void *) -1) /* Single execution handling. */ 
#define
    PTHREAD_ONCE_INIT 0 #ifdef __USE_XOPEN2K /* Value returned by 
'pthread_barrier_wait' for one of
    the threads after the required number of threads have called this function. 
-1 is distinct from
    0 and all errno constants */ # define PTHREAD_BARRIER_SERIAL_THREAD -1 
#endif __BEGIN_DECLS /*
    Create a new thread, starting with execution of START-ROUTINE getting 
passed ARG. Creation
    attributed come from ATTR. The new handle is stored in *NEWTHREAD. */ 
extern int pthread_create
    (pthread_t *__restrict __newthread, const pthread_attr_t *__restrict 
__attr, void
    *(*__start_routine) (void *), void *__restrict __arg) __THROWNL __nonnull 
((1, 3)); /* Terminate
    calling thread. The registered cleanup handlers are called via exception 
handling so we cannot
    mark this function with __THROW.*/ extern void pthread_exit (void 
*__retval) __attribute__
    ((__noreturn__)); /* Make calling thread wait for termination of the thread 
TH. The exit status
    of the thread is stored in *THREAD_RETURN, if THREAD_RETURN is not NULL. 
This function is a
    cancellation point and therefore not marked with __THROW. */ extern int 
pthread_join (pthread_t
    __th, void **__thread_return); #ifdef __USE_GNU /* Check whether thread TH 
has terminated. If
    yes return the status of the thread in *THREAD_RETURN, if THREAD_RETURN is 
not NULL. */ extern
    int pthread_tryjoin_np (pthread_t __th, void **__thread_return) __THROW; /* 
Make calling thread
    wait for termination of the thread TH, but only until TIMEOUT. The exit 
status of the thread is
    stored in *THREAD_RETURN, if THREAD_RETURN is not NULL. This function is a 
cancellation point
    and therefore not marked with __THROW. */ extern int pthread_timedjoin_np 
(pthread_t __th, void
    **__thread_return, const struct timespec *__abstime); #endif /* Indicate 
that the thread TH is
    never to be joined with PTHREAD_JOIN. The resources of TH will therefore be 
freed immediately
    when it terminates, instead of waiting for another thread to perform 
PTHREAD_JOIN on it. */
    extern int pthread_detach (pthread_t __th) __THROW; /* Obtain the 
identifier of the current
    thread. */ extern pthread_t pthread_self (void) __THROW __attribute__ 
((__const__)); /* Compare
    two thread identifiers. */ extern int pthread_equal (pthread_t __thread1, 
pthread_t __thread2)
    __THROW __attribute__ ((__const__)); /* Thread attribute handling. */ /* 
Initialize thread
    attribute *ATTR with default attributes (detachstate is PTHREAD_JOINABLE, 
scheduling policy is
    SCHED_OTHER, no user-provided stack). */ extern int pthread_attr_init 
(pthread_attr_t *__attr)
    __THROW __nonnull ((1)); /* Destroy thread attribute *ATTR. */ extern int 
pthread_attr_destroy
    (pthread_attr_t *__attr) __THROW __nonnull ((1)); /* Get detach state 
attribute. */ extern int
    pthread_attr_getdetachstate (const pthread_attr_t *__attr, int 
*__detachstate) __THROW __nonnull
    ((1, 2)); /* Set detach state attribute. */ extern int 
pthread_attr_setdetachstate
    (pthread_attr_t *__attr, int __detachstate) __THROW __nonnull ((1)); /* Get 
the size of the
    guard area created for stack overflow protection. */ extern int 
pthread_attr_getguardsize (const
    pthread_attr_t *__attr, size_t *__guardsize) __THROW __nonnull ((1, 2)); /* 
Set the size of the
    guard area created for stack overflow protection. */ extern int 
pthread_attr_setguardsize
    (pthread_attr_t *__attr, size_t __guardsize) __THROW __nonnull ((1)); /* 
Return in *PARAM the
    scheduling parameters of *ATTR. */ extern int pthread_attr_getschedparam 
(const pthread_attr_t
    *__restrict __attr, struct sched_param *__restrict __param) __THROW 
__nonnull ((1, 2)); /* Set
    scheduling parameters (priority, etc) in *ATTR according to PARAM. */ 
extern int
    pthread_attr_setschedparam (pthread_attr_t *__restrict __attr, const struct 
sched_param
    *__restrict __param) __THROW __nonnull ((1, 2)); /* Return in *POLICY the 
scheduling policy of
    *ATTR. */ extern int pthread_attr_getschedpolicy (const pthread_attr_t 
*__restrict __attr, int
    *__restrict __policy) __THROW __nonnull ((1, 2)); /* Set scheduling policy 
in *ATTR according to
    POLICY. */ extern int pthread_attr_setschedpolicy (pthread_attr_t *__attr, 
int __policy) __THROW
    __nonnull ((1)); /* Return in *INHERIT the scheduling inheritance mode of 
*ATTR. */ extern int
    pthread_attr_getinheritsched (const pthread_attr_t *__restrict __attr, int 
*__restrict
    __inherit) __THROW __nonnull ((1, 2)); /* Set scheduling inheritance mode 
in *ATTR according to
    INHERIT. */ extern int pthread_attr_setinheritsched (pthread_attr_t 
*__attr, int __inherit)
    __THROW __nonnull ((1)); /* Return in *SCOPE the scheduling contention 
scope of *ATTR. */ extern
    int pthread_attr_getscope (const pthread_attr_t *__restrict __attr, int 
*__restrict __scope)
    __THROW __nonnull ((1, 2)); /* Set scheduling contention scope in *ATTR 
according to SCOPE. */
    extern int pthread_attr_setscope (pthread_attr_t *__attr, int __scope) 
__THROW __nonnull ((1));
    /* Return the previously set address for the stack. */ extern int 
pthread_attr_getstackaddr
    (const pthread_attr_t *__restrict __attr, void **__restrict __stackaddr) 
__THROW __nonnull ((1,
    2)) __attribute_deprecated__; /* Set the starting address of the stack of 
the thread to be
    created. Depending on whether the stack grows up or down the value must 
either be higher or
    lower than all the address in the memory block. The minimal size of the 
block must be
    PTHREAD_STACK_MIN. */ extern int pthread_attr_setstackaddr (pthread_attr_t 
*__attr, void
    *__stackaddr) __THROW __nonnull ((1)) __attribute_deprecated__; /* Return 
the currently used
    minimal stack size. */ extern int pthread_attr_getstacksize (const 
pthread_attr_t *__restrict
    __attr, size_t *__restrict __stacksize) __THROW __nonnull ((1, 2)); /* Add 
information about the
    minimum stack size needed for the thread to be started. This size must 
never be less than
    PTHREAD_STACK_MIN and must also not exceed the system limits. */ extern int
    pthread_attr_setstacksize (pthread_attr_t *__attr, size_t __stacksize) 
__THROW __nonnull ((1));
    #ifdef __USE_XOPEN2K /* Return the previously set address for the stack. */ 
extern int
    pthread_attr_getstack (const pthread_attr_t *__restrict __attr, void 
**__restrict __stackaddr,
    size_t *__restrict __stacksize) __THROW __nonnull ((1, 2, 3)); /* The 
following two interfaces
    are intended to replace the last two. They require setting the address as 
well as the size since
    only setting the address will make the implementation on some architectures 
impossible. */
    extern int pthread_attr_setstack (pthread_attr_t *__attr, void 
*__stackaddr, size_t __stacksize)
    __THROW __nonnull ((1)); #endif #ifdef __USE_GNU /* Thread created with 
attribute ATTR will be
    limited to run only on the processors represented in CPUSET. */ extern int
    pthread_attr_setaffinity_np (pthread_attr_t *__attr, size_t __cpusetsize, 
const cpu_set_t
    *__cpuset) __THROW __nonnull ((1, 3)); /* Get bit set in CPUSET 
representing the processors
    threads created with ATTR can run on. */ extern int 
pthread_attr_getaffinity_np (const
    pthread_attr_t *__attr, size_t __cpusetsize, cpu_set_t *__cpuset) __THROW 
__nonnull ((1, 3)); /*
    Get the default attributes used by pthread_create in this process. */ 
extern int
    pthread_getattr_default_np (pthread_attr_t *__attr) __THROW __nonnull 
((1)); /* Set the default
    attributes to be used by pthread_create in this process. */ extern int
    pthread_setattr_default_np (const pthread_attr_t *__attr) __THROW __nonnull 
((1)); /* Initialize
    thread attribute *ATTR with attributes corresponding to the already running 
thread TH. It shall
    be called on uninitialized ATTR and destroyed with pthread_attr_destroy 
when no longer needed.
    */ extern int pthread_getattr_np (pthread_t __th, pthread_attr_t *__attr) 
__THROW __nonnull
    ((2)); #endif /* Functions for scheduling control. */ /* Set the scheduling 
parameters for
    TARGET_THREAD according to POLICY and *PARAM. */ extern int 
pthread_setschedparam (pthread_t
    __target_thread, int __policy, const struct sched_param *__param) __THROW 
__nonnull ((3)); /*
    Return in *POLICY and *PARAM the scheduling parameters for TARGET_THREAD. 
*/ extern int
    pthread_getschedparam (pthread_t __target_thread, int *__restrict __policy, 
struct sched_param
    *__restrict __param) __THROW __nonnull ((2, 3)); /* Set the scheduling 
priority for
    TARGET_THREAD. */ extern int pthread_setschedprio (pthread_t 
__target_thread, int __prio)
    __THROW; #ifdef __USE_GNU /* Get thread name visible in the kernel and its 
interfaces. */ extern
    int pthread_getname_np (pthread_t __target_thread, char *__buf, size_t 
__buflen) __THROW
    __nonnull ((2)); /* Set thread name visible in the kernel and its 
interfaces. */ extern int
    pthread_setname_np (pthread_t __target_thread, const char *__name) __THROW 
__nonnull ((2));
    #endif #ifdef __USE_UNIX98 /* Determine level of concurrency. */ extern int
    pthread_getconcurrency (void) __THROW; /* Set new concurrency level to 
LEVEL. */ extern int
    pthread_setconcurrency (int __level) __THROW; #endif #ifdef __USE_GNU /* 
Yield the processor to
    another thread or process. This function is similar to the POSIX 
`sched_yield' function but
    might be differently implemented in the case of a m-on-n thread 
implementation. */ extern int
    pthread_yield (void) __THROW; /* Limit specified thread TH to run only on 
the processors
    represented in CPUSET. */ extern int pthread_setaffinity_np (pthread_t 
__th, size_t
    __cpusetsize, const cpu_set_t *__cpuset) __THROW __nonnull ((3)); /* Get 
bit set in CPUSET
    representing the processors TH can run on. */ extern int 
pthread_getaffinity_np (pthread_t __th,
    size_t __cpusetsize, cpu_set_t *__cpuset) __THROW __nonnull ((3)); #endif 
/* Functions for
    handling initialization. */ /* Guarantee that the initialization function 
INIT_ROUTINE will be
    called only once, even if pthread_once is executed several times with the 
same ONCE_CONTROL
    argument. ONCE_CONTROL must point to a static or extern variable 
initialized to
    PTHREAD_ONCE_INIT. The initialization functions might throw exception which 
is why this function
    is not marked with __THROW. */ extern int pthread_once (pthread_once_t 
*__once_control, void
    (*__init_routine) (void)) __nonnull ((1, 2)); /* Functions for handling 
cancellation. Note that
    these functions are explicitly not marked to not throw an exception in C++ 
code. If cancellation
    is implemented by unwinding this is necessary to have the compiler generate 
the unwind
    information. */ /* Set cancelability state of current thread to STATE, 
returning old state in
    *OLDSTATE if OLDSTATE is not NULL. */ extern int pthread_setcancelstate 
(int __state, int
    *__oldstate); /* Set cancellation state of current thread to TYPE, 
returning the old type in
    *OLDTYPE if OLDTYPE is not NULL. */ extern int pthread_setcanceltype (int 
__type, int
    *__oldtype); /* Cancel THREAD immediately or at the next possibility. */ 
extern int
    pthread_cancel (pthread_t __th); /* Test for pending cancellation for the 
current thread and
    terminate the thread as per pthread_exit(PTHREAD_CANCELED) if it has been 
cancelled. */ extern
    void pthread_testcancel (void); /* Cancellation handling with integration 
into exception
    handling. */ typedef struct { struct { __jmp_buf __cancel_jmp_buf; int 
__mask_was_saved; }
    __cancel_jmp_buf[1]; void *__pad[4]; } __pthread_unwind_buf_t __attribute__ 
((__aligned__)); /*
    No special attributes by default. */ #ifndef __cleanup_fct_attribute # 
define
    __cleanup_fct_attribute #endif /* Structure to hold the cleanup handler 
information. */ struct
    __pthread_cleanup_frame { void (*__cancel_routine) (void *); void 
*__cancel_arg; int __do_it;
    int __cancel_type; }; #if defined __GNUC__ && defined __EXCEPTIONS # ifdef 
__cplusplus /* Class
    to handle cancellation handler invocation. */ class __pthread_cleanup_class 
{ void
    (*__cancel_routine) (void *); void *__cancel_arg; int __do_it; int 
__cancel_type; public:
    __pthread_cleanup_class (void (*__fct) (void *), void *__arg) : 
__cancel_routine (__fct),
    __cancel_arg (__arg), __do_it (1) { } ~__pthread_cleanup_class () { if 
(__do_it)
    __cancel_routine (__cancel_arg); } void __setdoit (int __newval) { __do_it 
= __newval; } void
    __defer () { pthread_setcanceltype (PTHREAD_CANCEL_DEFERRED, 
&__cancel_type); } void __restore
    () const { pthread_setcanceltype (__cancel_type, 0); } }; /* Install a 
cleanup handler: ROUTINE
    will be called with arguments ARG when the thread is canceled or calls 
pthread_exit. ROUTINE
    will also be called with arguments ARG when the matching 
pthread_cleanup_pop is executed with
    non-zero EXECUTE argument. pthread_cleanup_push and pthread_cleanup_pop are 
macros and must
    always be used in matching pairs at the same nesting level of braces. */ # 
define
    pthread_cleanup_push(routine, arg) \ do { \ __pthread_cleanup_class 
__clframe (routine, arg) /*
    Remove a cleanup handler installed by the matching pthread_cleanup_push. If 
EXECUTE is non-zero,
    the handler function is called. */ # define pthread_cleanup_pop(execute) \ 
__clframe.__setdoit
    (execute); \ } while (0) # ifdef __USE_GNU /* Install a cleanup handler as 
pthread_cleanup_push
    does, but also saves the current cancellation type and sets it to deferred 
cancellation. */ #
    define pthread_cleanup_push_defer_np(routine, arg) \ do { \ 
__pthread_cleanup_class __clframe
    (routine, arg); \ __clframe.__defer () /* Remove a cleanup handler as 
pthread_cleanup_pop does,
    but also restores the cancellation type that was in effect when the matching
    pthread_cleanup_push_defer was called. */ # define 
pthread_cleanup_pop_restore_np(execute) \
    __clframe.__restore (); \ __clframe.__setdoit (execute); \ } while (0) # 
endif # else /*
    Function called to call the cleanup handler. As an extern inline function 
the compiler is free
    to decide inlining the change when needed or fall back on the copy which 
must exist somewhere
    else. */ __extern_inline void __pthread_cleanup_routine (struct 
__pthread_cleanup_frame
    *__frame) { if (__frame->__do_it) __frame->__cancel_routine 
(__frame->__cancel_arg); } /*
    Install a cleanup handler: ROUTINE will be called with arguments ARG when 
the thread is canceled
    or calls pthread_exit. ROUTINE will also be called with arguments ARG when 
the matching
    pthread_cleanup_pop is executed with non-zero EXECUTE argument. 
pthread_cleanup_push and
    pthread_cleanup_pop are macros and must always be used in matching pairs at 
the same nesting
    level of braces. */ # define pthread_cleanup_push(routine, arg) \ do { \ 
struct
    __pthread_cleanup_frame __clframe \ __attribute__ ((__cleanup__ 
(__pthread_cleanup_routine))) \
    = { .__cancel_routine = (routine), .__cancel_arg = (arg), \ .__do_it = 1 }; 
/* Remove a cleanup
    handler installed by the matching pthread_cleanup_push. If EXECUTE is 
non-zero, the handler
    function is called. */ # define pthread_cleanup_pop(execute) \ 
__clframe.__do_it = (execute); \
    } while (0) # ifdef __USE_GNU /* Install a cleanup handler as 
pthread_cleanup_push does, but
    also saves the current cancellation type and sets it to deferred 
cancellation. */ # define
    pthread_cleanup_push_defer_np(routine, arg) \ do { \ struct 
__pthread_cleanup_frame __clframe \
    __attribute__ ((__cleanup__ (__pthread_cleanup_routine))) \ = { 
.__cancel_routine = (routine),
    .__cancel_arg = (arg), \ .__do_it = 1 }; \ (void) pthread_setcanceltype
    (PTHREAD_CANCEL_DEFERRED, \ &__clframe.__cancel_type) /* Remove a cleanup 
handler as
    pthread_cleanup_pop does, but also restores the cancellation type that was 
in effect when the
    matching pthread_cleanup_push_defer was called. */ # define
    pthread_cleanup_pop_restore_np(execute) \ (void) pthread_setcanceltype 
(__clframe.__cancel_type,
    NULL); \ __clframe.__do_it = (execute); \ } while (0) # endif # endif #else 
/* Install a cleanup
    handler: ROUTINE will be called with arguments ARG when the thread is 
canceled or calls
    pthread_exit. ROUTINE will also be called with arguments ARG when the 
matching
    pthread_cleanup_pop is executed with non-zero EXECUTE argument. 
pthread_cleanup_push and
    pthread_cleanup_pop are macros and must always be used in matching pairs at 
the same nesting
    level of braces. */ # define pthread_cleanup_push(routine, arg) \ do { \ 
__pthread_unwind_buf_t
    __cancel_buf; \ void (*__cancel_routine) (void *) = (routine); \ void 
*__cancel_arg = (arg); \
    int __not_first_call = __sigsetjmp ((struct __jmp_buf_tag *) (void *) \
    __cancel_buf.__cancel_jmp_buf, 0); \ if (__glibc_unlikely 
(__not_first_call)) \ { \
    __cancel_routine (__cancel_arg); \ __pthread_unwind_next (&__cancel_buf); \ 
/* NOTREACHED */ \ }
    \ \ __pthread_register_cancel (&__cancel_buf); \ do { extern void 
__pthread_register_cancel
    (__pthread_unwind_buf_t *__buf) __cleanup_fct_attribute; /* Remove a 
cleanup handler installed
    by the matching pthread_cleanup_push. If EXECUTE is non-zero, the handler 
function is called. */
    # define pthread_cleanup_pop(execute) \ do { } while (0);/* Empty to allow 
label before
    pthread_cleanup_pop. */\ } while (0); \ __pthread_unregister_cancel 
(&__cancel_buf); \ if
    (execute) \ __cancel_routine (__cancel_arg); \ } while (0) extern void
    __pthread_unregister_cancel (__pthread_unwind_buf_t *__buf) 
__cleanup_fct_attribute; # ifdef
    __USE_GNU /* Install a cleanup handler as pthread_cleanup_push does, but 
also saves the current
    cancellation type and sets it to deferred cancellation. */ # define
    pthread_cleanup_push_defer_np(routine, arg) \ do { \ __pthread_unwind_buf_t 
__cancel_buf; \ void
    (*__cancel_routine) (void *) = (routine); \ void *__cancel_arg = (arg); \ 
int __not_first_call =
    __sigsetjmp ((struct __jmp_buf_tag *) (void *) \ 
__cancel_buf.__cancel_jmp_buf, 0); \ if
    (__glibc_unlikely (__not_first_call)) \ { \ __cancel_routine 
(__cancel_arg); \
    __pthread_unwind_next (&__cancel_buf); \ /* NOTREACHED */ \ } \ \
    __pthread_register_cancel_defer (&__cancel_buf); \ do { extern void
    __pthread_register_cancel_defer (__pthread_unwind_buf_t *__buf) 
__cleanup_fct_attribute; /*
    Remove a cleanup handler as pthread_cleanup_pop does, but also restores the 
cancellation type
    that was in effect when the matching pthread_cleanup_push_defer was called. 
*/ # define
    pthread_cleanup_pop_restore_np(execute) \ do { } while (0);/* Empty to 
allow label before
    pthread_cleanup_pop. */\ } while (0); \ __pthread_unregister_cancel_restore 
(&__cancel_buf); \
    if (execute) \ __cancel_routine (__cancel_arg); \ } while (0) extern void
    __pthread_unregister_cancel_restore (__pthread_unwind_buf_t *__buf) 
__cleanup_fct_attribute; #
    endif /* Internal interface to initiate cleanup. */ extern void 
__pthread_unwind_next
    (__pthread_unwind_buf_t *__buf) __cleanup_fct_attribute __attribute__ 
((__noreturn__)) # ifndef
    SHARED __attribute__ ((__weak__)) # endif ; #endif /* Function used in the 
macros. */ struct
    __jmp_buf_tag; extern int __sigsetjmp (struct __jmp_buf_tag *__env, int 
__savemask) __THROWNL;
    /* Mutex handling. */ /* Initialize a mutex. */ extern int 
pthread_mutex_init (pthread_mutex_t
    *__mutex, const pthread_mutexattr_t *__mutexattr) __THROW __nonnull ((1)); 
/* Destroy a mutex.
    */ extern int pthread_mutex_destroy (pthread_mutex_t *__mutex) __THROW 
__nonnull ((1)); /* Try
    locking a mutex. */ extern int pthread_mutex_trylock (pthread_mutex_t 
*__mutex) __THROWNL
    __nonnull ((1)); /* Lock a mutex. */ extern int pthread_mutex_lock 
(pthread_mutex_t *__mutex)
    __THROWNL __nonnull ((1)); #ifdef __USE_XOPEN2K /* Wait until lock becomes 
available, or
    specified time passes. */ extern int pthread_mutex_timedlock 
(pthread_mutex_t *__restrict
    __mutex, const struct timespec *__restrict __abstime) __THROWNL __nonnull 
((1, 2)); #endif /*
    Unlock a mutex. */ extern int pthread_mutex_unlock (pthread_mutex_t 
*__mutex) __THROWNL
    __nonnull ((1)); /* Get the priority ceiling of MUTEX. */ extern int
    pthread_mutex_getprioceiling (const pthread_mutex_t * __restrict __mutex, 
int *__restrict
    __prioceiling) __THROW __nonnull ((1, 2)); /* Set the priority ceiling of 
MUTEX to PRIOCEILING,
    return old priority ceiling value in *OLD_CEILING. */ extern int 
pthread_mutex_setprioceiling
    (pthread_mutex_t *__restrict __mutex, int __prioceiling, int *__restrict 
__old_ceiling) __THROW
    __nonnull ((1, 3)); #ifdef __USE_XOPEN2K8 /* Declare the state protected by 
MUTEX as consistent.
    */ extern int pthread_mutex_consistent (pthread_mutex_t *__mutex) __THROW 
__nonnull ((1)); #
    ifdef __USE_GNU extern int pthread_mutex_consistent_np (pthread_mutex_t 
*__mutex) __THROW
    __nonnull ((1)); # endif #endif /* Functions for handling mutex attributes. 
*/ /* Initialize
    mutex attribute object ATTR with default attributes (kind is 
PTHREAD_MUTEX_TIMED_NP). */ extern
    int pthread_mutexattr_init (pthread_mutexattr_t *__attr) __THROW __nonnull 
((1)); /* Destroy
    mutex attribute object ATTR. */ extern int pthread_mutexattr_destroy 
(pthread_mutexattr_t
    *__attr) __THROW __nonnull ((1)); /* Get the process-shared flag of the 
mutex attribute ATTR. */
    extern int pthread_mutexattr_getpshared (const pthread_mutexattr_t * 
__restrict __attr, int
    *__restrict __pshared) __THROW __nonnull ((1, 2)); /* Set the 
process-shared flag of the mutex
    attribute ATTR. */ extern int pthread_mutexattr_setpshared 
(pthread_mutexattr_t *__attr, int
    __pshared) __THROW __nonnull ((1)); #if defined __USE_UNIX98 || defined 
__USE_XOPEN2K8 /* Return
    in *KIND the mutex kind attribute in *ATTR. */ extern int 
pthread_mutexattr_gettype (const
    pthread_mutexattr_t *__restrict __attr, int *__restrict __kind) __THROW 
__nonnull ((1, 2)); /*
    Set the mutex kind attribute in *ATTR to KIND (either PTHREAD_MUTEX_NORMAL,
    PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK, or 
PTHREAD_MUTEX_DEFAULT). */ extern int
    pthread_mutexattr_settype (pthread_mutexattr_t *__attr, int __kind) __THROW 
__nonnull ((1));
    #endif /* Return in *PROTOCOL the mutex protocol attribute in *ATTR. */ 
extern int
    pthread_mutexattr_getprotocol (const pthread_mutexattr_t * __restrict 
__attr, int *__restrict
    __protocol) __THROW __nonnull ((1, 2)); /* Set the mutex protocol attribute 
in *ATTR to PROTOCOL
    (either PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT). 
*/ extern int
    pthread_mutexattr_setprotocol (pthread_mutexattr_t *__attr, int __protocol) 
__THROW __nonnull
    ((1)); /* Return in *PRIOCEILING the mutex prioceiling attribute in *ATTR. 
*/ extern int
    pthread_mutexattr_getprioceiling (const pthread_mutexattr_t * __restrict 
__attr, int *__restrict
    __prioceiling) __THROW __nonnull ((1, 2)); /* Set the mutex prioceiling 
attribute in *ATTR to
    PRIOCEILING. */ extern int pthread_mutexattr_setprioceiling 
(pthread_mutexattr_t *__attr, int
    __prioceiling) __THROW __nonnull ((1)); #ifdef __USE_XOPEN2K /* Get the 
robustness flag of the
    mutex attribute ATTR. */ extern int pthread_mutexattr_getrobust (const 
pthread_mutexattr_t
    *__attr, int *__robustness) __THROW __nonnull ((1, 2)); # ifdef __USE_GNU 
extern int
    pthread_mutexattr_getrobust_np (const pthread_mutexattr_t *__attr, int 
*__robustness) __THROW
    __nonnull ((1, 2)); # endif /* Set the robustness flag of the mutex 
attribute ATTR. */ extern
    int pthread_mutexattr_setrobust (pthread_mutexattr_t *__attr, int 
__robustness) __THROW
    __nonnull ((1)); # ifdef __USE_GNU extern int pthread_mutexattr_setrobust_np
    (pthread_mutexattr_t *__attr, int __robustness) __THROW __nonnull ((1)); # 
endif #endif #if
    defined __USE_UNIX98 || defined __USE_XOPEN2K /* Functions for handling 
read-write locks. */ /*
    Initialize read-write lock RWLOCK using attributes ATTR, or use the default 
values if later is
    NULL. */ extern int pthread_rwlock_init (pthread_rwlock_t *__restrict 
__rwlock, const
    pthread_rwlockattr_t *__restrict __attr) __THROW __nonnull ((1)); /* 
Destroy read-write lock
    RWLOCK. */ extern int pthread_rwlock_destroy (pthread_rwlock_t *__rwlock) 
__THROW __nonnull
    ((1)); /* Acquire read lock for RWLOCK. */ extern int pthread_rwlock_rdlock 
(pthread_rwlock_t
    *__rwlock) __THROWNL __nonnull ((1)); /* Try to acquire read lock for 
RWLOCK. */ extern int
    pthread_rwlock_tryrdlock (pthread_rwlock_t *__rwlock) __THROWNL __nonnull 
((1)); # ifdef
    __USE_XOPEN2K /* Try to acquire read lock for RWLOCK or return after 
specfied time. */ extern
    int pthread_rwlock_timedrdlock (pthread_rwlock_t *__restrict __rwlock, 
const struct timespec
    *__restrict __abstime) __THROWNL __nonnull ((1, 2)); # endif /* Acquire 
write lock for RWLOCK.
    */ extern int pthread_rwlock_wrlock (pthread_rwlock_t *__rwlock) __THROWNL 
__nonnull ((1)); /*
    Try to acquire write lock for RWLOCK. */ extern int 
pthread_rwlock_trywrlock (pthread_rwlock_t
    *__rwlock) __THROWNL __nonnull ((1)); # ifdef __USE_XOPEN2K /* Try to 
acquire write lock for
    RWLOCK or return after specfied time. */ extern int 
pthread_rwlock_timedwrlock (pthread_rwlock_t
    *__restrict __rwlock, const struct timespec *__restrict __abstime) 
__THROWNL __nonnull ((1, 2));
    # endif /* Unlock RWLOCK. */ extern int pthread_rwlock_unlock 
(pthread_rwlock_t *__rwlock)
    __THROWNL __nonnull ((1)); /* Functions for handling read-write lock 
attributes. */ /*
    Initialize attribute object ATTR with default values. */ extern int 
pthread_rwlockattr_init
    (pthread_rwlockattr_t *__attr) __THROW __nonnull ((1)); /* Destroy 
attribute object ATTR. */
    extern int pthread_rwlockattr_destroy (pthread_rwlockattr_t *__attr) 
__THROW __nonnull ((1)); /*
    Return current setting of process-shared attribute of ATTR in PSHARED. */ 
extern int
    pthread_rwlockattr_getpshared (const pthread_rwlockattr_t * __restrict 
__attr, int *__restrict
    __pshared) __THROW __nonnull ((1, 2)); /* Set process-shared attribute of 
ATTR to PSHARED. */
    extern int pthread_rwlockattr_setpshared (pthread_rwlockattr_t *__attr, int 
__pshared) __THROW
    __nonnull ((1)); /* Return current setting of reader/writer preference. */ 
extern int
    pthread_rwlockattr_getkind_np (const pthread_rwlockattr_t * __restrict 
__attr, int *__restrict
    __pref) __THROW __nonnull ((1, 2)); /* Set reader/write preference. */ 
extern int
    pthread_rwlockattr_setkind_np (pthread_rwlockattr_t *__attr, int __pref) 
__THROW __nonnull
    ((1)); #endif /* Functions for handling conditional variables. */ /* 
Initialize condition
    variable COND using attributes ATTR, or use the default values if later is 
NULL. */ extern int
    pthread_cond_init (pthread_cond_t *__restrict __cond, const 
pthread_condattr_t *__restrict
    __cond_attr) __THROW __nonnull ((1)); /* Destroy condition variable COND. 
*/ extern int
    pthread_cond_destroy (pthread_cond_t *__cond) __THROW __nonnull ((1)); /* 
Wake up one thread
    waiting for condition variable COND. */ extern int pthread_cond_signal 
(pthread_cond_t *__cond)
    __THROWNL __nonnull ((1)); /* Wake up all threads waiting for condition 
variables COND. */
    extern int pthread_cond_broadcast (pthread_cond_t *__cond) __THROWNL 
__nonnull ((1)); /* Wait
    for condition variable COND to be signaled or broadcast. MUTEX is assumed 
to be locked before.
    This function is a cancellation point and therefore not marked with 
__THROW. */ extern int
    pthread_cond_wait (pthread_cond_t *__restrict __cond, pthread_mutex_t 
*__restrict __mutex)
    __nonnull ((1, 2)); /* Wait for condition variable COND to be signaled or 
broadcast until
    ABSTIME. MUTEX is assumed to be locked before. ABSTIME is an absolute time 
specification; zero
    is the beginning of the epoch (00:00:00 GMT, January 1, 1970). This 
function is a cancellation
    point and therefore not marked with __THROW. */ extern int 
pthread_cond_timedwait
    (pthread_cond_t *__restrict __cond, pthread_mutex_t *__restrict __mutex, 
const struct timespec
    *__restrict __abstime) __nonnull ((1, 2, 3)); /* Functions for handling 
condition variable
    attributes. */ /* Initialize condition variable attribute ATTR. */ extern 
int
    pthread_condattr_init (pthread_condattr_t *__attr) __THROW __nonnull ((1)); 
/* Destroy condition
    variable attribute ATTR. */ extern int pthread_condattr_destroy 
(pthread_condattr_t *__attr)
    __THROW __nonnull ((1)); /* Get the process-shared flag of the condition 
variable attribute
    ATTR. */ extern int pthread_condattr_getpshared (const pthread_condattr_t * 
__restrict __attr,
    int *__restrict __pshared) __THROW __nonnull ((1, 2)); /* Set the 
process-shared flag of the
    condition variable attribute ATTR. */ extern int 
pthread_condattr_setpshared (pthread_condattr_t
    *__attr, int __pshared) __THROW __nonnull ((1)); #ifdef __USE_XOPEN2K /* 
Get the clock selected
    for the condition variable attribute ATTR. */ extern int 
pthread_condattr_getclock (const
    pthread_condattr_t * __restrict __attr, __clockid_t *__restrict __clock_id) 
__THROW __nonnull
    ((1, 2)); /* Set the clock selected for the condition variable attribute 
ATTR. */ extern int
    pthread_condattr_setclock (pthread_condattr_t *__attr, __clockid_t 
__clock_id) __THROW __nonnull
    ((1)); #endif #ifdef __USE_XOPEN2K /* Functions to handle spinlocks. */ /* 
Initialize the
    spinlock LOCK. If PSHARED is nonzero the spinlock can be shared between 
different processes. */
    extern int pthread_spin_init (pthread_spinlock_t *__lock, int __pshared) 
__THROW __nonnull
    ((1)); /* Destroy the spinlock LOCK. */ extern int pthread_spin_destroy 
(pthread_spinlock_t
    *__lock) __THROW __nonnull ((1)); /* Wait until spinlock LOCK is retrieved. 
*/ extern int
    pthread_spin_lock (pthread_spinlock_t *__lock) __THROWNL __nonnull ((1)); 
/* Try to lock
    spinlock LOCK. */ extern int pthread_spin_trylock (pthread_spinlock_t 
*__lock) __THROWNL
    __nonnull ((1)); /* Release spinlock LOCK. */ extern int 
pthread_spin_unlock (pthread_spinlock_t
    *__lock) __THROWNL __nonnull ((1)); /* Functions to handle barriers. */ /* 
Initialize BARRIER
    with the attributes in ATTR. The barrier is opened when COUNT waiters 
arrived. */ extern int
    pthread_barrier_init (pthread_barrier_t *__restrict __barrier, const 
pthread_barrierattr_t
    *__restrict __attr, unsigned int __count) __THROW __nonnull ((1)); /* 
Destroy a previously
    dynamically initialized barrier BARRIER. */ extern int 
pthread_barrier_destroy
    (pthread_barrier_t *__barrier) __THROW __nonnull ((1)); /* Wait on barrier 
BARRIER. */ extern
    int pthread_barrier_wait (pthread_barrier_t *__barrier) __THROWNL __nonnull 
((1)); /* Initialize
    barrier attribute ATTR. */ extern int pthread_barrierattr_init 
(pthread_barrierattr_t *__attr)
    __THROW __nonnull ((1)); /* Destroy previously dynamically initialized 
barrier attribute ATTR.
    */ extern int pthread_barrierattr_destroy (pthread_barrierattr_t *__attr) 
__THROW __nonnull
    ((1)); /* Get the process-shared flag of the barrier attribute ATTR. */ 
extern int
    pthread_barrierattr_getpshared (const pthread_barrierattr_t * __restrict 
__attr, int *__restrict
    __pshared) __THROW __nonnull ((1, 2)); /* Set the process-shared flag of 
the barrier attribute
    ATTR. */ extern int pthread_barrierattr_setpshared (pthread_barrierattr_t 
*__attr, int
    __pshared) __THROW __nonnull ((1)); #endif /* Functions for handling 
thread-specific data. */ /*
    Create a key value identifying a location in the thread-specific data area. 
Each thread
    maintains a distinct thread-specific data area. DESTR_FUNCTION, if 
non-NULL, is called with the
    value associated to that key when the key is destroyed. DESTR_FUNCTION is 
not called if the
    value associated is NULL when the key is destroyed. */ extern int 
pthread_key_create
    (pthread_key_t *__key, void (*__destr_function) (void *)) __THROW __nonnull 
((1)); /* Destroy
    KEY. */ extern int pthread_key_delete (pthread_key_t __key) __THROW; /* 
Return current value of
    the thread-specific data slot identified by KEY. */ extern void 
*pthread_getspecific
    (pthread_key_t __key) __THROW; /* Store POINTER in the thread-specific data 
slot identified by
    KEY. */ extern int pthread_setspecific (pthread_key_t __key, const void 
*__pointer) __THROW ;
    #ifdef __USE_XOPEN2K /* Get ID of CPU-time clock for thread THREAD_ID. */ 
extern int
    pthread_getcpuclockid (pthread_t __thread_id, __clockid_t *__clock_id) 
__THROW __nonnull ((2));
    #endif /* Install handlers to be called when a new process is created with 
FORK. The PREPARE
    handler is called in the parent process just before performing FORK. The 
PARENT handler is
    called in the parent process just after FORK. The CHILD handler is called 
in the child process.
    Each of the three handlers can be NULL, meaning that no handler needs to be 
called at that
    point. PTHREAD_ATFORK can be called several times, in which case the 
PREPARE handlers are called
    in LIFO order (last added with PTHREAD_ATFORK, first called before FORK), 
and the PARENT and
    CHILD handlers are called in FIFO (first added, first called). */ extern 
int pthread_atfork
    (void (*__prepare) (void), void (*__parent) (void), void (*__child) (void)) 
__THROW; #ifdef
    __USE_EXTERN_INLINES /* Optimizations. */ __extern_inline int __NTH 
(pthread_equal (pthread_t
    __thread1, pthread_t __thread2)) { return __thread1 == __thread2; } #endif 
__END_DECLS #endif /*
    pthread.h */

---rony

------------------------------------------------------------------------------
Check out the vibrant tech community on one of the world's most
engaging tech sites, Slashdot.org! http://sdm.link/slashdot
_______________________________________________
Oorexx-devel mailing list
Oorexx-devel@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/oorexx-devel

Reply via email to