The script had a toxic mix of tabs and spaces, fix this.

Signed-off-by: Richard Purdie <richard.pur...@linuxfoundation.org>
---
 scripts/pybootchartgui/pybootchartgui/draw.py | 1378 ++++++++---------
 1 file changed, 689 insertions(+), 689 deletions(-)

diff --git a/scripts/pybootchartgui/pybootchartgui/draw.py 
b/scripts/pybootchartgui/pybootchartgui/draw.py
index 201ce4577fc..019070a7db4 100644
--- a/scripts/pybootchartgui/pybootchartgui/draw.py
+++ b/scripts/pybootchartgui/pybootchartgui/draw.py
@@ -23,18 +23,18 @@ from operator import itemgetter
 
 class RenderOptions:
 
-       def __init__(self, app_options):
-               # should we render a cumulative CPU time chart
-               self.cumulative = True
-               self.charts = True
-               self.kernel_only = False
-               self.app_options = app_options
-
-       def proc_tree (self, trace):
-               if self.kernel_only:
-                       return trace.kernel_tree
-               else:
-                       return trace.proc_tree
+    def __init__(self, app_options):
+        # should we render a cumulative CPU time chart
+        self.cumulative = True
+        self.charts = True
+        self.kernel_only = False
+        self.app_options = app_options
+
+    def proc_tree (self, trace):
+        if self.kernel_only:
+            return trace.kernel_tree
+        else:
+            return trace.proc_tree
 
 # Process tree background color.
 BACK_COLOR = (1.0, 1.0, 1.0, 1.0)
@@ -136,11 +136,11 @@ TASK_COLOR_PACKAGE_WRITE = (0.0, 0.50, 0.50, 1.0)
 # Distinct colors used for different disk volumnes.
 # If we have more volumns, colors get re-used.
 VOLUME_COLORS = [
-       (1.0, 1.0, 0.00, 1.0),
-       (0.0, 1.00, 0.00, 1.0),
-       (1.0, 0.00, 1.00, 1.0),
-       (0.0, 0.00, 1.00, 1.0),
-       (0.0, 1.00, 1.00, 1.0),
+    (1.0, 1.0, 0.00, 1.0),
+    (0.0, 1.00, 0.00, 1.0),
+    (1.0, 0.00, 1.00, 1.0),
+    (0.0, 0.00, 1.00, 1.0),
+    (0.0, 1.00, 1.00, 1.0),
 ]
 
 # Process states
@@ -152,7 +152,7 @@ STATE_STOPPED   = 4
 STATE_ZOMBIE    = 5
 
 STATE_COLORS = [(0, 0, 0, 0), PROC_COLOR_R, PROC_COLOR_S, PROC_COLOR_D, \
-               PROC_COLOR_T, PROC_COLOR_Z, PROC_COLOR_X, PROC_COLOR_W]
+        PROC_COLOR_T, PROC_COLOR_Z, PROC_COLOR_X, PROC_COLOR_W]
 
 # CumulativeStats Types
 STAT_TYPE_CPU = 0
@@ -160,80 +160,80 @@ STAT_TYPE_IO = 1
 
 # Convert ps process state to an int
 def get_proc_state(flag):
-       return "RSDTZXW".find(flag) + 1
+    return "RSDTZXW".find(flag) + 1
 
 def draw_text(ctx, text, color, x, y):
-       ctx.set_source_rgba(*color)
-       ctx.move_to(x, y)
-       ctx.show_text(text)
+    ctx.set_source_rgba(*color)
+    ctx.move_to(x, y)
+    ctx.show_text(text)
 
 def draw_fill_rect(ctx, color, rect):
-       ctx.set_source_rgba(*color)
-       ctx.rectangle(*rect)
-       ctx.fill()
+    ctx.set_source_rgba(*color)
+    ctx.rectangle(*rect)
+    ctx.fill()
 
 def draw_rect(ctx, color, rect):
-       ctx.set_source_rgba(*color)
-       ctx.rectangle(*rect)
-       ctx.stroke()
+    ctx.set_source_rgba(*color)
+    ctx.rectangle(*rect)
+    ctx.stroke()
 
 def draw_legend_box(ctx, label, fill_color, x, y, s):
-       draw_fill_rect(ctx, fill_color, (x, y - s, s, s))
-       draw_rect(ctx, PROC_BORDER_COLOR, (x, y - s, s, s))
-       draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)
+    draw_fill_rect(ctx, fill_color, (x, y - s, s, s))
+    draw_rect(ctx, PROC_BORDER_COLOR, (x, y - s, s, s))
+    draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)
 
 def draw_legend_line(ctx, label, fill_color, x, y, s):
-       draw_fill_rect(ctx, fill_color, (x, y - s/2, s + 1, 3))
-       ctx.arc(x + (s + 1)/2.0, y - (s - 3)/2.0, 2.5, 0, 2.0 * math.pi)
-       ctx.fill()
-       draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)
+    draw_fill_rect(ctx, fill_color, (x, y - s/2, s + 1, 3))
+    ctx.arc(x + (s + 1)/2.0, y - (s - 3)/2.0, 2.5, 0, 2.0 * math.pi)
+    ctx.fill()
+    draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)
 
 def draw_label_in_box(ctx, color, label, x, y, w, maxx):
-       label_w = ctx.text_extents(label)[2]
-       label_x = x + w / 2 - label_w / 2
-       if label_w + 10 > w:
-               label_x = x + w + 5
-       if label_x + label_w > maxx:
-               label_x = x - label_w - 5
-       draw_text(ctx, label, color, label_x, y)
+    label_w = ctx.text_extents(label)[2]
+    label_x = x + w / 2 - label_w / 2
+    if label_w + 10 > w:
+        label_x = x + w + 5
+    if label_x + label_w > maxx:
+        label_x = x - label_w - 5
+    draw_text(ctx, label, color, label_x, y)
 
 def draw_sec_labels(ctx, options, rect, sec_w, nsecs):
-       ctx.set_font_size(AXIS_FONT_SIZE)
-       prev_x = 0
-       for i in range(0, rect[2] + 1, sec_w):
-               if ((i / sec_w) % nsecs == 0) :
-                       if options.app_options.as_minutes :
-                               label = "%.1f" % (i / sec_w / 60.0)
-                       else :
-                               label = "%d" % (i / sec_w)
-                       label_w = ctx.text_extents(label)[2]
-                       x = rect[0] + i - label_w/2
-                       if x >= prev_x:
-                               draw_text(ctx, label, TEXT_COLOR, x, rect[1] - 
2)
-                               prev_x = x + label_w
+    ctx.set_font_size(AXIS_FONT_SIZE)
+    prev_x = 0
+    for i in range(0, rect[2] + 1, sec_w):
+        if ((i / sec_w) % nsecs == 0) :
+            if options.app_options.as_minutes :
+                label = "%.1f" % (i / sec_w / 60.0)
+            else :
+                label = "%d" % (i / sec_w)
+            label_w = ctx.text_extents(label)[2]
+            x = rect[0] + i - label_w/2
+            if x >= prev_x:
+                draw_text(ctx, label, TEXT_COLOR, x, rect[1] - 2)
+                prev_x = x + label_w
 
 def draw_box_ticks(ctx, rect, sec_w):
-       draw_rect(ctx, BORDER_COLOR, tuple(rect))
-
-       ctx.set_line_cap(cairo.LINE_CAP_SQUARE)
-
-       for i in range(sec_w, rect[2] + 1, sec_w):
-               if ((i / sec_w) % 10 == 0) :
-                       ctx.set_line_width(1.5)
-               elif sec_w < 5 :
-                       continue
-               else :
-                       ctx.set_line_width(1.0)
-               if ((i / sec_w) % 30 == 0) :
-                       ctx.set_source_rgba(*TICK_COLOR_BOLD)
-               else :
-                       ctx.set_source_rgba(*TICK_COLOR)
-               ctx.move_to(rect[0] + i, rect[1] + 1)
-               ctx.line_to(rect[0] + i, rect[1] + rect[3] - 1)
-               ctx.stroke()
-       ctx.set_line_width(1.0)
-
-       ctx.set_line_cap(cairo.LINE_CAP_BUTT)
+    draw_rect(ctx, BORDER_COLOR, tuple(rect))
+
+    ctx.set_line_cap(cairo.LINE_CAP_SQUARE)
+
+    for i in range(sec_w, rect[2] + 1, sec_w):
+        if ((i / sec_w) % 10 == 0) :
+            ctx.set_line_width(1.5)
+        elif sec_w < 5 :
+            continue
+        else :
+            ctx.set_line_width(1.0)
+        if ((i / sec_w) % 30 == 0) :
+            ctx.set_source_rgba(*TICK_COLOR_BOLD)
+        else :
+            ctx.set_source_rgba(*TICK_COLOR)
+        ctx.move_to(rect[0] + i, rect[1] + 1)
+        ctx.line_to(rect[0] + i, rect[1] + rect[3] - 1)
+        ctx.stroke()
+    ctx.set_line_width(1.0)
+
+    ctx.set_line_cap(cairo.LINE_CAP_BUTT)
 
 def draw_annotations(ctx, proc_tree, times, rect):
     ctx.set_line_cap(cairo.LINE_CAP_SQUARE)
@@ -252,51 +252,51 @@ def draw_annotations(ctx, proc_tree, times, rect):
     ctx.set_dash([])
 
 def draw_chart(ctx, color, fill, chart_bounds, data, proc_tree, data_range):
-       ctx.set_line_width(0.5)
-       x_shift = proc_tree.start_time
-
-       def transform_point_coords(point, x_base, y_base, \
-                                  xscale, yscale, x_trans, y_trans):
-               x = (point[0] - x_base) * xscale + x_trans
-               y = (point[1] - y_base) * -yscale + y_trans + chart_bounds[3]
-               return x, y
-
-       max_x = max (x for (x, y) in data)
-       max_y = max (y for (x, y) in data)
-       # avoid divide by zero
-       if max_y == 0:
-               max_y = 1.0
-       xscale = float (chart_bounds[2]) / (max_x - x_shift)
-       # If data_range is given, scale the chart so that the value range in
-       # data_range matches the chart bounds exactly.
-       # Otherwise, scale so that the actual data matches the chart bounds.
-       if data_range:
-               yscale = float(chart_bounds[3]) / (data_range[1] - 
data_range[0])
-               ybase = data_range[0]
-       else:
-               yscale = float(chart_bounds[3]) / max_y
-               ybase = 0
-
-       first = transform_point_coords (data[0], x_shift, ybase, xscale, 
yscale, \
-                                       chart_bounds[0], chart_bounds[1])
-       last =  transform_point_coords (data[-1], x_shift, ybase, xscale, 
yscale, \
-                                       chart_bounds[0], chart_bounds[1])
-
-       ctx.set_source_rgba(*color)
-       ctx.move_to(*first)
-       for point in data:
-               x, y = transform_point_coords (point, x_shift, ybase, xscale, 
yscale, \
-                                              chart_bounds[0], chart_bounds[1])
-               ctx.line_to(x, y)
-       if fill:
-               ctx.stroke_preserve()
-               ctx.line_to(last[0], chart_bounds[1]+chart_bounds[3])
-               ctx.line_to(first[0], chart_bounds[1]+chart_bounds[3])
-               ctx.line_to(first[0], first[1])
-               ctx.fill()
-       else:
-               ctx.stroke()
-       ctx.set_line_width(1.0)
+    ctx.set_line_width(0.5)
+    x_shift = proc_tree.start_time
+
+    def transform_point_coords(point, x_base, y_base, \
+                   xscale, yscale, x_trans, y_trans):
+        x = (point[0] - x_base) * xscale + x_trans
+        y = (point[1] - y_base) * -yscale + y_trans + chart_bounds[3]
+        return x, y
+
+    max_x = max (x for (x, y) in data)
+    max_y = max (y for (x, y) in data)
+    # avoid divide by zero
+    if max_y == 0:
+        max_y = 1.0
+    xscale = float (chart_bounds[2]) / (max_x - x_shift)
+    # If data_range is given, scale the chart so that the value range in
+    # data_range matches the chart bounds exactly.
+    # Otherwise, scale so that the actual data matches the chart bounds.
+    if data_range:
+        yscale = float(chart_bounds[3]) / (data_range[1] - data_range[0])
+        ybase = data_range[0]
+    else:
+        yscale = float(chart_bounds[3]) / max_y
+        ybase = 0
+
+    first = transform_point_coords (data[0], x_shift, ybase, xscale, yscale, \
+                        chart_bounds[0], chart_bounds[1])
+    last =  transform_point_coords (data[-1], x_shift, ybase, xscale, yscale, \
+                        chart_bounds[0], chart_bounds[1])
+
+    ctx.set_source_rgba(*color)
+    ctx.move_to(*first)
+    for point in data:
+        x, y = transform_point_coords (point, x_shift, ybase, xscale, yscale, \
+                           chart_bounds[0], chart_bounds[1])
+        ctx.line_to(x, y)
+    if fill:
+        ctx.stroke_preserve()
+        ctx.line_to(last[0], chart_bounds[1]+chart_bounds[3])
+        ctx.line_to(first[0], chart_bounds[1]+chart_bounds[3])
+        ctx.line_to(first[0], first[1])
+        ctx.fill()
+    else:
+        ctx.stroke()
+    ctx.set_line_width(1.0)
 
 bar_h = 55
 meminfo_bar_h = 2 * bar_h
@@ -311,338 +311,338 @@ CUML_HEIGHT = 2000 # Increased value to accomodate CPU 
and I/O Graphs
 OPTIONS = None
 
 def extents(options, xscale, trace):
-       start = min(trace.start.keys())
-       end = start
-
-        processes = 0
-        for proc in trace.processes:
-                if not options.app_options.show_all and \
-                   trace.processes[proc][1] - trace.processes[proc][0] < 
options.app_options.mintime:
-                        continue
-
-                if trace.processes[proc][1] > end:
-                        end = trace.processes[proc][1]
-                processes += 1
-
-       if trace.min is not None and trace.max is not None:
-               start = trace.min
-               end = trace.max
-
-       w = int ((end - start) * sec_w_base * xscale) + 2 * off_x
-       h = proc_h * processes + header_h + 2 * off_y
-
-       if options.charts:
-               if trace.cpu_stats:
-                       h += 30 + bar_h
-               if trace.disk_stats:
-                       h += 30 + bar_h
-               if trace.monitor_disk:
-                       h += 30 + bar_h
-               if trace.mem_stats:
-                       h += meminfo_bar_h
-
-       return (w, h)
+    start = min(trace.start.keys())
+    end = start
+
+    processes = 0
+    for proc in trace.processes:
+        if not options.app_options.show_all and \
+               trace.processes[proc][1] - trace.processes[proc][0] < 
options.app_options.mintime:
+            continue
+
+        if trace.processes[proc][1] > end:
+            end = trace.processes[proc][1]
+        processes += 1
+
+    if trace.min is not None and trace.max is not None:
+        start = trace.min
+        end = trace.max
+
+    w = int ((end - start) * sec_w_base * xscale) + 2 * off_x
+    h = proc_h * processes + header_h + 2 * off_y
+
+    if options.charts:
+        if trace.cpu_stats:
+            h += 30 + bar_h
+        if trace.disk_stats:
+            h += 30 + bar_h
+        if trace.monitor_disk:
+            h += 30 + bar_h
+        if trace.mem_stats:
+            h += meminfo_bar_h
+
+    return (w, h)
 
 def clip_visible(clip, rect):
-       xmax = max (clip[0], rect[0])
-       ymax = max (clip[1], rect[1])
-       xmin = min (clip[0] + clip[2], rect[0] + rect[2])
-       ymin = min (clip[1] + clip[3], rect[1] + rect[3])
-       return (xmin > xmax and ymin > ymax)
+    xmax = max (clip[0], rect[0])
+    ymax = max (clip[1], rect[1])
+    xmin = min (clip[0] + clip[2], rect[0] + rect[2])
+    ymin = min (clip[1] + clip[3], rect[1] + rect[3])
+    return (xmin > xmax and ymin > ymax)
 
 def render_charts(ctx, options, clip, trace, curr_y, w, h, sec_w):
-       proc_tree = options.proc_tree(trace)
-
-       # render bar legend
-       if trace.cpu_stats:
-               ctx.set_font_size(LEGEND_FONT_SIZE)
-
-               draw_legend_box(ctx, "CPU (user+sys)", CPU_COLOR, off_x, 
curr_y+20, leg_s)
-               draw_legend_box(ctx, "I/O (wait)", IO_COLOR, off_x + 120, 
curr_y+20, leg_s)
-
-               # render I/O wait
-               chart_rect = (off_x, curr_y+30, w, bar_h)
-               if clip_visible (clip, chart_rect):
-                       draw_box_ticks (ctx, chart_rect, sec_w)
-                       draw_annotations (ctx, proc_tree, trace.times, 
chart_rect)
-                       draw_chart (ctx, IO_COLOR, True, chart_rect, \
-                                   [(sample.time, sample.user + sample.sys + 
sample.io) for sample in trace.cpu_stats], \
-                                   proc_tree, None)
-                       # render CPU load
-                       draw_chart (ctx, CPU_COLOR, True, chart_rect, \
-                                   [(sample.time, sample.user + sample.sys) 
for sample in trace.cpu_stats], \
-                                   proc_tree, None)
-
-               curr_y = curr_y + 30 + bar_h
-
-       # render second chart
-       if trace.disk_stats:
-               draw_legend_line(ctx, "Disk throughput", DISK_TPUT_COLOR, 
off_x, curr_y+20, leg_s)
-               draw_legend_box(ctx, "Disk utilization", IO_COLOR, off_x + 120, 
curr_y+20, leg_s)
-
-               # render I/O utilization
-               chart_rect = (off_x, curr_y+30, w, bar_h)
-               if clip_visible (clip, chart_rect):
-                       draw_box_ticks (ctx, chart_rect, sec_w)
-                       draw_annotations (ctx, proc_tree, trace.times, 
chart_rect)
-                       draw_chart (ctx, IO_COLOR, True, chart_rect, \
-                                   [(sample.time, sample.util) for sample in 
trace.disk_stats], \
-                                   proc_tree, None)
-
-               # render disk throughput
-               max_sample = max (trace.disk_stats, key = lambda s: s.tput)
-               if clip_visible (clip, chart_rect):
-                       draw_chart (ctx, DISK_TPUT_COLOR, False, chart_rect, \
-                                   [(sample.time, sample.tput) for sample in 
trace.disk_stats], \
-                                   proc_tree, None)
-
-               pos_x = off_x + ((max_sample.time - proc_tree.start_time) * w / 
proc_tree.duration)
-
-               shift_x, shift_y = -20, 20
-               if (pos_x < off_x + 245):
-                       shift_x, shift_y = 5, 40
-
-               label = "%dMB/s" % round ((max_sample.tput) / 1024.0)
-               draw_text (ctx, label, DISK_TPUT_COLOR, pos_x + shift_x, curr_y 
+ shift_y)
-
-               curr_y = curr_y + 30 + bar_h
-
-       # render disk space usage
-       #
-       # Draws the amount of disk space used on each volume relative to the
-       # lowest recorded amount. The graphs for each volume are stacked above
-       # each other so that total disk usage is visible.
-       if trace.monitor_disk:
-               ctx.set_font_size(LEGEND_FONT_SIZE)
-               # Determine set of volumes for which we have
-               # information and the minimal amount of used disk
-               # space for each. Currently samples are allowed to
-               # not have a values for all volumes; drawing could be
-               # made more efficient if that wasn't the case.
-               volumes = set()
-               min_used = {}
-               for sample in trace.monitor_disk:
-                       for volume, used in sample.records.items():
-                               volumes.add(volume)
-                               if volume not in min_used or min_used[volume] > 
used:
-                                       min_used[volume] = used
-               volumes = sorted(list(volumes))
-               disk_scale = 0
-               for i, volume in enumerate(volumes):
-                       volume_scale = max([sample.records[volume] - 
min_used[volume]
-                                           for sample in trace.monitor_disk
-                                           if volume in sample.records])
-                       # Does not take length of volume name into account, but 
fixed offset
-                       # works okay in practice.
-                       draw_legend_box(ctx, '%s (max: %u MiB)' % (volume, 
volume_scale / 1024 / 1024),
-                                       VOLUME_COLORS[i % len(VOLUME_COLORS)],
-                                       off_x + i * 250, curr_y+20, leg_s)
-                       disk_scale += volume_scale
-
-               # render used amount of disk space
-               chart_rect = (off_x, curr_y+30, w, bar_h)
-               if clip_visible (clip, chart_rect):
-                       draw_box_ticks (ctx, chart_rect, sec_w)
-                       draw_annotations (ctx, proc_tree, trace.times, 
chart_rect)
-                       for i in range(len(volumes), 0, -1):
-                               draw_chart (ctx, VOLUME_COLORS[(i - 1) % 
len(VOLUME_COLORS)], True, chart_rect, \
-                                           [(sample.time,
-                                             # Sum up used space of all 
volumes including the current one
-                                             # so that the graphs appear as 
stacked on top of each other.
-                                             reduce(lambda x,y: x+y,
-                                                    [sample.records[volume] - 
min_used[volume]
-                                                     for volume in volumes[0:i]
-                                                     if volume in 
sample.records],
-                                                    0))
-                                            for sample in trace.monitor_disk], 
\
-                                           proc_tree, [0, disk_scale])
-
-               curr_y = curr_y + 30 + bar_h
-
-       # render mem usage
-       chart_rect = (off_x, curr_y+30, w, meminfo_bar_h)
-       mem_stats = trace.mem_stats
-       if mem_stats and clip_visible (clip, chart_rect):
-               mem_scale = max(sample.buffers for sample in mem_stats)
-               draw_legend_box(ctx, "Mem cached (scale: %u MiB)" % 
(float(mem_scale) / 1024), MEM_CACHED_COLOR, off_x, curr_y+20, leg_s)
-               draw_legend_box(ctx, "Used", MEM_USED_COLOR, off_x + 240, 
curr_y+20, leg_s)
-               draw_legend_box(ctx, "Buffers", MEM_BUFFERS_COLOR, off_x + 360, 
curr_y+20, leg_s)
-               draw_legend_line(ctx, "Swap (scale: %u MiB)" % 
max([(sample.swap)/1024 for sample in mem_stats]), \
-                                MEM_SWAP_COLOR, off_x + 480, curr_y+20, leg_s)
-               draw_box_ticks(ctx, chart_rect, sec_w)
-               draw_annotations(ctx, proc_tree, trace.times, chart_rect)
-               draw_chart(ctx, MEM_BUFFERS_COLOR, True, chart_rect, \
-                          [(sample.time, sample.buffers) for sample in 
trace.mem_stats], \
-                          proc_tree, [0, mem_scale])
-               draw_chart(ctx, MEM_USED_COLOR, True, chart_rect, \
-                          [(sample.time, sample.used) for sample in 
mem_stats], \
-                          proc_tree, [0, mem_scale])
-               draw_chart(ctx, MEM_CACHED_COLOR, True, chart_rect, \
-                          [(sample.time, sample.cached) for sample in 
mem_stats], \
-                          proc_tree, [0, mem_scale])
-               draw_chart(ctx, MEM_SWAP_COLOR, False, chart_rect, \
-                          [(sample.time, float(sample.swap)) for sample in 
mem_stats], \
-                          proc_tree, None)
-
-               curr_y = curr_y + meminfo_bar_h
-
-       return curr_y
+    proc_tree = options.proc_tree(trace)
+
+    # render bar legend
+    if trace.cpu_stats:
+        ctx.set_font_size(LEGEND_FONT_SIZE)
+
+        draw_legend_box(ctx, "CPU (user+sys)", CPU_COLOR, off_x, curr_y+20, 
leg_s)
+        draw_legend_box(ctx, "I/O (wait)", IO_COLOR, off_x + 120, curr_y+20, 
leg_s)
+
+        # render I/O wait
+        chart_rect = (off_x, curr_y+30, w, bar_h)
+        if clip_visible (clip, chart_rect):
+            draw_box_ticks (ctx, chart_rect, sec_w)
+            draw_annotations (ctx, proc_tree, trace.times, chart_rect)
+            draw_chart (ctx, IO_COLOR, True, chart_rect, \
+                    [(sample.time, sample.user + sample.sys + sample.io) for 
sample in trace.cpu_stats], \
+                    proc_tree, None)
+            # render CPU load
+            draw_chart (ctx, CPU_COLOR, True, chart_rect, \
+                    [(sample.time, sample.user + sample.sys) for sample in 
trace.cpu_stats], \
+                    proc_tree, None)
+
+        curr_y = curr_y + 30 + bar_h
+
+    # render second chart
+    if trace.disk_stats:
+        draw_legend_line(ctx, "Disk throughput", DISK_TPUT_COLOR, off_x, 
curr_y+20, leg_s)
+        draw_legend_box(ctx, "Disk utilization", IO_COLOR, off_x + 120, 
curr_y+20, leg_s)
+
+        # render I/O utilization
+        chart_rect = (off_x, curr_y+30, w, bar_h)
+        if clip_visible (clip, chart_rect):
+            draw_box_ticks (ctx, chart_rect, sec_w)
+            draw_annotations (ctx, proc_tree, trace.times, chart_rect)
+            draw_chart (ctx, IO_COLOR, True, chart_rect, \
+                    [(sample.time, sample.util) for sample in 
trace.disk_stats], \
+                    proc_tree, None)
+
+        # render disk throughput
+        max_sample = max (trace.disk_stats, key = lambda s: s.tput)
+        if clip_visible (clip, chart_rect):
+            draw_chart (ctx, DISK_TPUT_COLOR, False, chart_rect, \
+                    [(sample.time, sample.tput) for sample in 
trace.disk_stats], \
+                    proc_tree, None)
+
+        pos_x = off_x + ((max_sample.time - proc_tree.start_time) * w / 
proc_tree.duration)
+
+        shift_x, shift_y = -20, 20
+        if (pos_x < off_x + 245):
+            shift_x, shift_y = 5, 40
+
+        label = "%dMB/s" % round ((max_sample.tput) / 1024.0)
+        draw_text (ctx, label, DISK_TPUT_COLOR, pos_x + shift_x, curr_y + 
shift_y)
+
+        curr_y = curr_y + 30 + bar_h
+
+    # render disk space usage
+    #
+    # Draws the amount of disk space used on each volume relative to the
+    # lowest recorded amount. The graphs for each volume are stacked above
+    # each other so that total disk usage is visible.
+    if trace.monitor_disk:
+        ctx.set_font_size(LEGEND_FONT_SIZE)
+        # Determine set of volumes for which we have
+        # information and the minimal amount of used disk
+        # space for each. Currently samples are allowed to
+        # not have a values for all volumes; drawing could be
+        # made more efficient if that wasn't the case.
+        volumes = set()
+        min_used = {}
+        for sample in trace.monitor_disk:
+            for volume, used in sample.records.items():
+                volumes.add(volume)
+                if volume not in min_used or min_used[volume] > used:
+                    min_used[volume] = used
+        volumes = sorted(list(volumes))
+        disk_scale = 0
+        for i, volume in enumerate(volumes):
+            volume_scale = max([sample.records[volume] - min_used[volume]
+                                for sample in trace.monitor_disk
+                                if volume in sample.records])
+            # Does not take length of volume name into account, but fixed 
offset
+            # works okay in practice.
+            draw_legend_box(ctx, '%s (max: %u MiB)' % (volume, volume_scale / 
1024 / 1024),
+                            VOLUME_COLORS[i % len(VOLUME_COLORS)],
+                            off_x + i * 250, curr_y+20, leg_s)
+            disk_scale += volume_scale
+
+        # render used amount of disk space
+        chart_rect = (off_x, curr_y+30, w, bar_h)
+        if clip_visible (clip, chart_rect):
+            draw_box_ticks (ctx, chart_rect, sec_w)
+            draw_annotations (ctx, proc_tree, trace.times, chart_rect)
+            for i in range(len(volumes), 0, -1):
+                draw_chart (ctx, VOLUME_COLORS[(i - 1) % len(VOLUME_COLORS)], 
True, chart_rect, \
+                            [(sample.time,
+                              # Sum up used space of all volumes including the 
current one
+                              # so that the graphs appear as stacked on top of 
each other.
+                              reduce(lambda x,y: x+y,
+                                     [sample.records[volume] - min_used[volume]
+                                      for volume in volumes[0:i]
+                                      if volume in sample.records],
+                                     0))
+                             for sample in trace.monitor_disk], \
+                            proc_tree, [0, disk_scale])
+
+        curr_y = curr_y + 30 + bar_h
+
+    # render mem usage
+    chart_rect = (off_x, curr_y+30, w, meminfo_bar_h)
+    mem_stats = trace.mem_stats
+    if mem_stats and clip_visible (clip, chart_rect):
+        mem_scale = max(sample.buffers for sample in mem_stats)
+        draw_legend_box(ctx, "Mem cached (scale: %u MiB)" % (float(mem_scale) 
/ 1024), MEM_CACHED_COLOR, off_x, curr_y+20, leg_s)
+        draw_legend_box(ctx, "Used", MEM_USED_COLOR, off_x + 240, curr_y+20, 
leg_s)
+        draw_legend_box(ctx, "Buffers", MEM_BUFFERS_COLOR, off_x + 360, 
curr_y+20, leg_s)
+        draw_legend_line(ctx, "Swap (scale: %u MiB)" % max([(sample.swap)/1024 
for sample in mem_stats]), \
+                 MEM_SWAP_COLOR, off_x + 480, curr_y+20, leg_s)
+        draw_box_ticks(ctx, chart_rect, sec_w)
+        draw_annotations(ctx, proc_tree, trace.times, chart_rect)
+        draw_chart(ctx, MEM_BUFFERS_COLOR, True, chart_rect, \
+               [(sample.time, sample.buffers) for sample in trace.mem_stats], \
+               proc_tree, [0, mem_scale])
+        draw_chart(ctx, MEM_USED_COLOR, True, chart_rect, \
+               [(sample.time, sample.used) for sample in mem_stats], \
+               proc_tree, [0, mem_scale])
+        draw_chart(ctx, MEM_CACHED_COLOR, True, chart_rect, \
+               [(sample.time, sample.cached) for sample in mem_stats], \
+               proc_tree, [0, mem_scale])
+        draw_chart(ctx, MEM_SWAP_COLOR, False, chart_rect, \
+               [(sample.time, float(sample.swap)) for sample in mem_stats], \
+               proc_tree, None)
+
+        curr_y = curr_y + meminfo_bar_h
+
+    return curr_y
 
 def render_processes_chart(ctx, options, trace, curr_y, w, h, sec_w):
-        chart_rect = [off_x, curr_y+header_h, w, h - 2 * off_y - header_h - 
leg_s + proc_h]
-
-       draw_legend_box (ctx, "Configure", \
-                        TASK_COLOR_CONFIGURE, off_x  , curr_y + 45, leg_s)
-       draw_legend_box (ctx, "Compile", \
-                        TASK_COLOR_COMPILE, off_x+120, curr_y + 45, leg_s)
-       draw_legend_box (ctx, "Install", \
-                        TASK_COLOR_INSTALL, off_x+240, curr_y + 45, leg_s)
-       draw_legend_box (ctx, "Populate Sysroot", \
-                        TASK_COLOR_SYSROOT, off_x+360, curr_y + 45, leg_s)
-       draw_legend_box (ctx, "Package", \
-                        TASK_COLOR_PACKAGE, off_x+480, curr_y + 45, leg_s)
-       draw_legend_box (ctx, "Package Write",
-                        TASK_COLOR_PACKAGE_WRITE, off_x+600, curr_y + 45, 
leg_s)
-
-       ctx.set_font_size(PROC_TEXT_FONT_SIZE)
-
-       draw_box_ticks(ctx, chart_rect, sec_w)
-       draw_sec_labels(ctx, options, chart_rect, sec_w, 30)
-
-       y = curr_y+header_h
-
-        offset = trace.min or min(trace.start.keys())
-        for s in sorted(trace.start.keys()):
-            for val in sorted(trace.start[s]):
-                if not options.app_options.show_all and \
-                   trace.processes[val][1] - s < options.app_options.mintime:
-                    continue
-                task = val.split(":")[1]
-                #print val
-                #print trace.processes[val][1]
-                #print s
-                x = chart_rect[0] + (s - offset) * sec_w
-                w = ((trace.processes[val][1] - s) * sec_w)
-
-                #print "proc at %s %s %s %s" % (x, y, w, proc_h)
-                col = None
-                if task == "do_compile":
-                    col = TASK_COLOR_COMPILE
-                elif task == "do_configure":
-                    col = TASK_COLOR_CONFIGURE
-                elif task == "do_install":
-                    col = TASK_COLOR_INSTALL
-                elif task == "do_populate_sysroot":
-                    col = TASK_COLOR_SYSROOT
-                elif task == "do_package":
-                    col = TASK_COLOR_PACKAGE
-                elif task == "do_package_write_rpm" or \
+    chart_rect = [off_x, curr_y+header_h, w, h - 2 * off_y - header_h - leg_s 
+ proc_h]
+
+    draw_legend_box (ctx, "Configure", \
+             TASK_COLOR_CONFIGURE, off_x  , curr_y + 45, leg_s)
+    draw_legend_box (ctx, "Compile", \
+             TASK_COLOR_COMPILE, off_x+120, curr_y + 45, leg_s)
+    draw_legend_box (ctx, "Install", \
+             TASK_COLOR_INSTALL, off_x+240, curr_y + 45, leg_s)
+    draw_legend_box (ctx, "Populate Sysroot", \
+             TASK_COLOR_SYSROOT, off_x+360, curr_y + 45, leg_s)
+    draw_legend_box (ctx, "Package", \
+             TASK_COLOR_PACKAGE, off_x+480, curr_y + 45, leg_s)
+    draw_legend_box (ctx, "Package Write",
+             TASK_COLOR_PACKAGE_WRITE, off_x+600, curr_y + 45, leg_s)
+
+    ctx.set_font_size(PROC_TEXT_FONT_SIZE)
+
+    draw_box_ticks(ctx, chart_rect, sec_w)
+    draw_sec_labels(ctx, options, chart_rect, sec_w, 30)
+
+    y = curr_y+header_h
+
+    offset = trace.min or min(trace.start.keys())
+    for s in sorted(trace.start.keys()):
+        for val in sorted(trace.start[s]):
+            if not options.app_options.show_all and \
+                    trace.processes[val][1] - s < options.app_options.mintime:
+                continue
+            task = val.split(":")[1]
+            #print val
+            #print trace.processes[val][1]
+            #print s
+            x = chart_rect[0] + (s - offset) * sec_w
+            w = ((trace.processes[val][1] - s) * sec_w)
+
+            #print "proc at %s %s %s %s" % (x, y, w, proc_h)
+            col = None
+            if task == "do_compile":
+                col = TASK_COLOR_COMPILE
+            elif task == "do_configure":
+                col = TASK_COLOR_CONFIGURE
+            elif task == "do_install":
+                col = TASK_COLOR_INSTALL
+            elif task == "do_populate_sysroot":
+                col = TASK_COLOR_SYSROOT
+            elif task == "do_package":
+                col = TASK_COLOR_PACKAGE
+            elif task == "do_package_write_rpm" or \
                      task == "do_package_write_deb" or \
                      task == "do_package_write_ipk":
-                    col = TASK_COLOR_PACKAGE_WRITE
-                else:
-                    col = WHITE
+                col = TASK_COLOR_PACKAGE_WRITE
+            else:
+                col = WHITE
 
-                if col:
-                    draw_fill_rect(ctx, col, (x, y, w, proc_h))
-                draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))
+            if col:
+                draw_fill_rect(ctx, col, (x, y, w, proc_h))
+            draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))
 
-                draw_label_in_box(ctx, PROC_TEXT_COLOR, val, x, y + proc_h - 
4, w, proc_h)
-                y = y + proc_h
+            draw_label_in_box(ctx, PROC_TEXT_COLOR, val, x, y + proc_h - 4, w, 
proc_h)
+            y = y + proc_h
 
-       return curr_y
+    return curr_y
 
 #
 # Render the chart.
 #
 def render(ctx, options, xscale, trace):
-       (w, h) = extents (options, xscale, trace)
-       global OPTIONS
-       OPTIONS = options.app_options
+    (w, h) = extents (options, xscale, trace)
+    global OPTIONS
+    OPTIONS = options.app_options
 
-       # x, y, w, h
-       clip = ctx.clip_extents()
+    # x, y, w, h
+    clip = ctx.clip_extents()
 
-       sec_w = int (xscale * sec_w_base)
-       ctx.set_line_width(1.0)
-       ctx.select_font_face(FONT_NAME)
-       draw_fill_rect(ctx, WHITE, (0, 0, max(w, MIN_IMG_W), h))
-       w -= 2*off_x
-       curr_y = off_y;
+    sec_w = int (xscale * sec_w_base)
+    ctx.set_line_width(1.0)
+    ctx.select_font_face(FONT_NAME)
+    draw_fill_rect(ctx, WHITE, (0, 0, max(w, MIN_IMG_W), h))
+    w -= 2*off_x
+    curr_y = off_y;
 
-       if options.charts:
-               curr_y = render_charts (ctx, options, clip, trace, curr_y, w, 
h, sec_w)
+    if options.charts:
+        curr_y = render_charts (ctx, options, clip, trace, curr_y, w, h, sec_w)
 
-       curr_y = render_processes_chart (ctx, options, trace, curr_y, w, h, 
sec_w)
+    curr_y = render_processes_chart (ctx, options, trace, curr_y, w, h, sec_w)
 
-       return
+    return
 
-       proc_tree = options.proc_tree (trace)
+    proc_tree = options.proc_tree (trace)
 
-       # draw the title and headers
-       if proc_tree.idle:
-               duration = proc_tree.idle
-       else:
-               duration = proc_tree.duration
+    # draw the title and headers
+    if proc_tree.idle:
+        duration = proc_tree.idle
+    else:
+        duration = proc_tree.duration
 
-       if not options.kernel_only:
-               curr_y = draw_header (ctx, trace.headers, duration)
-       else:
-               curr_y = off_y;
+    if not options.kernel_only:
+        curr_y = draw_header (ctx, trace.headers, duration)
+    else:
+        curr_y = off_y;
 
-       # draw process boxes
-       proc_height = h
-       if proc_tree.taskstats and options.cumulative:
-               proc_height -= CUML_HEIGHT
+    # draw process boxes
+    proc_height = h
+    if proc_tree.taskstats and options.cumulative:
+        proc_height -= CUML_HEIGHT
 
-       draw_process_bar_chart(ctx, clip, options, proc_tree, trace.times,
-                              curr_y, w, proc_height, sec_w)
+    draw_process_bar_chart(ctx, clip, options, proc_tree, trace.times,
+                   curr_y, w, proc_height, sec_w)
 
-       curr_y = proc_height
-       ctx.set_font_size(SIG_FONT_SIZE)
-       draw_text(ctx, SIGNATURE, SIG_COLOR, off_x + 5, proc_height - 8)
+    curr_y = proc_height
+    ctx.set_font_size(SIG_FONT_SIZE)
+    draw_text(ctx, SIGNATURE, SIG_COLOR, off_x + 5, proc_height - 8)
 
-       # draw a cumulative CPU-time-per-process graph
-       if proc_tree.taskstats and options.cumulative:
-               cuml_rect = (off_x, curr_y + off_y, w, CUML_HEIGHT/2 - off_y * 
2)
-               if clip_visible (clip, cuml_rect):
-                       draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, 
sec_w, STAT_TYPE_CPU)
+    # draw a cumulative CPU-time-per-process graph
+    if proc_tree.taskstats and options.cumulative:
+        cuml_rect = (off_x, curr_y + off_y, w, CUML_HEIGHT/2 - off_y * 2)
+        if clip_visible (clip, cuml_rect):
+            draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, 
STAT_TYPE_CPU)
 
-       # draw a cumulative I/O-time-per-process graph
-       if proc_tree.taskstats and options.cumulative:
-               cuml_rect = (off_x, curr_y + off_y * 100, w, CUML_HEIGHT/2 - 
off_y * 2)
-               if clip_visible (clip, cuml_rect):
-                       draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, 
sec_w, STAT_TYPE_IO)
+    # draw a cumulative I/O-time-per-process graph
+    if proc_tree.taskstats and options.cumulative:
+        cuml_rect = (off_x, curr_y + off_y * 100, w, CUML_HEIGHT/2 - off_y * 2)
+        if clip_visible (clip, cuml_rect):
+            draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, 
STAT_TYPE_IO)
 
 def draw_process_bar_chart(ctx, clip, options, proc_tree, times, curr_y, w, h, 
sec_w):
-       header_size = 0
-       if not options.kernel_only:
-               draw_legend_box (ctx, "Running (%cpu)",
-                                PROC_COLOR_R, off_x    , curr_y + 45, leg_s)
-               draw_legend_box (ctx, "Unint.sleep (I/O)",
-                                PROC_COLOR_D, off_x+120, curr_y + 45, leg_s)
-               draw_legend_box (ctx, "Sleeping",
-                                PROC_COLOR_S, off_x+240, curr_y + 45, leg_s)
-               draw_legend_box (ctx, "Zombie",
-                                PROC_COLOR_Z, off_x+360, curr_y + 45, leg_s)
-               header_size = 45
-
-       chart_rect = [off_x, curr_y + header_size + 15,
-                     w, h - 2 * off_y - (curr_y + header_size + 15) + proc_h]
-       ctx.set_font_size (PROC_TEXT_FONT_SIZE)
-
-       draw_box_ticks (ctx, chart_rect, sec_w)
-       if sec_w > 100:
-               nsec = 1
-       else:
-               nsec = 5
-       draw_sec_labels (ctx, options, chart_rect, sec_w, nsec)
-       draw_annotations (ctx, proc_tree, times, chart_rect)
-
-       y = curr_y + 60
-       for root in proc_tree.process_tree:
-               draw_processes_recursively(ctx, root, proc_tree, y, proc_h, 
chart_rect, clip)
-               y = y + proc_h * proc_tree.num_nodes([root])
+    header_size = 0
+    if not options.kernel_only:
+        draw_legend_box (ctx, "Running (%cpu)",
+                 PROC_COLOR_R, off_x    , curr_y + 45, leg_s)
+        draw_legend_box (ctx, "Unint.sleep (I/O)",
+                 PROC_COLOR_D, off_x+120, curr_y + 45, leg_s)
+        draw_legend_box (ctx, "Sleeping",
+                 PROC_COLOR_S, off_x+240, curr_y + 45, leg_s)
+        draw_legend_box (ctx, "Zombie",
+                 PROC_COLOR_Z, off_x+360, curr_y + 45, leg_s)
+        header_size = 45
+
+    chart_rect = [off_x, curr_y + header_size + 15,
+              w, h - 2 * off_y - (curr_y + header_size + 15) + proc_h]
+    ctx.set_font_size (PROC_TEXT_FONT_SIZE)
+
+    draw_box_ticks (ctx, chart_rect, sec_w)
+    if sec_w > 100:
+        nsec = 1
+    else:
+        nsec = 5
+    draw_sec_labels (ctx, options, chart_rect, sec_w, nsec)
+    draw_annotations (ctx, proc_tree, times, chart_rect)
+
+    y = curr_y + 60
+    for root in proc_tree.process_tree:
+        draw_processes_recursively(ctx, root, proc_tree, y, proc_h, 
chart_rect, clip)
+        y = y + proc_h * proc_tree.num_nodes([root])
 
 
 def draw_header (ctx, headers, duration):
@@ -678,291 +678,291 @@ def draw_header (ctx, headers, duration):
     return header_y
 
 def draw_processes_recursively(ctx, proc, proc_tree, y, proc_h, rect, clip) :
-       x = rect[0] +  ((proc.start_time - proc_tree.start_time) * rect[2] / 
proc_tree.duration)
-       w = ((proc.duration) * rect[2] / proc_tree.duration)
-
-       draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, 
rect, clip)
-       draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))
-       ipid = int(proc.pid)
-       if not OPTIONS.show_all:
-               cmdString = proc.cmd
-       else:
-               cmdString = ''
-       if (OPTIONS.show_pid or OPTIONS.show_all) and ipid is not 0:
-               cmdString = cmdString + " [" + str(ipid // 1000) + "]"
-       if OPTIONS.show_all:
-               if proc.args:
-                       cmdString = cmdString + " '" + "' '".join(proc.args) + 
"'"
-               else:
-                       cmdString = cmdString + " " + proc.exe
-
-       draw_label_in_box(ctx, PROC_TEXT_COLOR, cmdString, x, y + proc_h - 4, 
w, rect[0] + rect[2])
-
-       next_y = y + proc_h
-       for child in proc.child_list:
-               if next_y > clip[1] + clip[3]:
-                       break
-               child_x, child_y = draw_processes_recursively(ctx, child, 
proc_tree, next_y, proc_h, rect, clip)
-               draw_process_connecting_lines(ctx, x, y, child_x, child_y, 
proc_h)
-               next_y = next_y + proc_h * proc_tree.num_nodes([child])
-
-       return x, y
+    x = rect[0] +  ((proc.start_time - proc_tree.start_time) * rect[2] / 
proc_tree.duration)
+    w = ((proc.duration) * rect[2] / proc_tree.duration)
+
+    draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, 
clip)
+    draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))
+    ipid = int(proc.pid)
+    if not OPTIONS.show_all:
+        cmdString = proc.cmd
+    else:
+        cmdString = ''
+    if (OPTIONS.show_pid or OPTIONS.show_all) and ipid is not 0:
+        cmdString = cmdString + " [" + str(ipid // 1000) + "]"
+    if OPTIONS.show_all:
+        if proc.args:
+            cmdString = cmdString + " '" + "' '".join(proc.args) + "'"
+        else:
+            cmdString = cmdString + " " + proc.exe
+
+    draw_label_in_box(ctx, PROC_TEXT_COLOR, cmdString, x, y + proc_h - 4, w, 
rect[0] + rect[2])
+
+    next_y = y + proc_h
+    for child in proc.child_list:
+        if next_y > clip[1] + clip[3]:
+            break
+        child_x, child_y = draw_processes_recursively(ctx, child, proc_tree, 
next_y, proc_h, rect, clip)
+        draw_process_connecting_lines(ctx, x, y, child_x, child_y, proc_h)
+        next_y = next_y + proc_h * proc_tree.num_nodes([child])
+
+    return x, y
 
 
 def draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, 
clip):
 
-       if y > clip[1] + clip[3] or y + proc_h + 2 < clip[1]:
-               return
+    if y > clip[1] + clip[3] or y + proc_h + 2 < clip[1]:
+        return
 
-       draw_fill_rect(ctx, PROC_COLOR_S, (x, y, w, proc_h))
+    draw_fill_rect(ctx, PROC_COLOR_S, (x, y, w, proc_h))
 
-       last_tx = -1
-       for sample in proc.samples :
-               tx = rect[0] + round(((sample.time - proc_tree.start_time) * 
rect[2] / proc_tree.duration))
+    last_tx = -1
+    for sample in proc.samples :
+        tx = rect[0] + round(((sample.time - proc_tree.start_time) * rect[2] / 
proc_tree.duration))
 
-               # samples are sorted chronologically
-               if tx < clip[0]:
-                       continue
-               if tx > clip[0] + clip[2]:
-                       break
+        # samples are sorted chronologically
+        if tx < clip[0]:
+            continue
+        if tx > clip[0] + clip[2]:
+            break
 
-               tw = round(proc_tree.sample_period * rect[2] / 
float(proc_tree.duration))
-               if last_tx != -1 and abs(last_tx - tx) <= tw:
-                       tw -= last_tx - tx
-                       tx = last_tx
-               tw = max (tw, 1) # nice to see at least something
+        tw = round(proc_tree.sample_period * rect[2] / 
float(proc_tree.duration))
+        if last_tx != -1 and abs(last_tx - tx) <= tw:
+            tw -= last_tx - tx
+            tx = last_tx
+        tw = max (tw, 1) # nice to see at least something
 
-               last_tx = tx + tw
-               state = get_proc_state( sample.state )
+        last_tx = tx + tw
+        state = get_proc_state( sample.state )
 
-               color = STATE_COLORS[state]
-               if state == STATE_RUNNING:
-                       alpha = min (sample.cpu_sample.user + 
sample.cpu_sample.sys, 1.0)
-                       color = tuple(list(PROC_COLOR_R[0:3]) + [alpha])
-#                      print "render time %d [ tx %d tw %d ], sample state %s 
color %s alpha %g" % (sample.time, tx, tw, state, color, alpha)
-               elif state == STATE_SLEEPING:
-                       continue
+        color = STATE_COLORS[state]
+        if state == STATE_RUNNING:
+            alpha = min (sample.cpu_sample.user + sample.cpu_sample.sys, 1.0)
+            color = tuple(list(PROC_COLOR_R[0:3]) + [alpha])
+#            print "render time %d [ tx %d tw %d ], sample state %s color %s 
alpha %g" % (sample.time, tx, tw, state, color, alpha)
+        elif state == STATE_SLEEPING:
+            continue
 
-               draw_fill_rect(ctx, color, (tx, y, tw, proc_h))
+        draw_fill_rect(ctx, color, (tx, y, tw, proc_h))
 
 def draw_process_connecting_lines(ctx, px, py, x, y, proc_h):
-       ctx.set_source_rgba(*DEP_COLOR)
-       ctx.set_dash([2, 2])
-       if abs(px - x) < 3:
-               dep_off_x = 3
-               dep_off_y = proc_h / 4
-               ctx.move_to(x, y + proc_h / 2)
-               ctx.line_to(px - dep_off_x, y + proc_h / 2)
-               ctx.line_to(px - dep_off_x, py - dep_off_y)
-               ctx.line_to(px, py - dep_off_y)
-       else:
-               ctx.move_to(x, y + proc_h / 2)
-               ctx.line_to(px, y + proc_h / 2)
-               ctx.line_to(px, py)
-       ctx.stroke()
-       ctx.set_dash([])
+    ctx.set_source_rgba(*DEP_COLOR)
+    ctx.set_dash([2, 2])
+    if abs(px - x) < 3:
+        dep_off_x = 3
+        dep_off_y = proc_h / 4
+        ctx.move_to(x, y + proc_h / 2)
+        ctx.line_to(px - dep_off_x, y + proc_h / 2)
+        ctx.line_to(px - dep_off_x, py - dep_off_y)
+        ctx.line_to(px, py - dep_off_y)
+    else:
+        ctx.move_to(x, y + proc_h / 2)
+        ctx.line_to(px, y + proc_h / 2)
+        ctx.line_to(px, py)
+    ctx.stroke()
+    ctx.set_dash([])
 
 # elide the bootchart collector - it is quite distorting
 def elide_bootchart(proc):
-       return proc.cmd == 'bootchartd' or proc.cmd == 'bootchart-colle'
+    return proc.cmd == 'bootchartd' or proc.cmd == 'bootchart-colle'
 
 class CumlSample:
-       def __init__(self, proc):
-               self.cmd = proc.cmd
-               self.samples = []
-               self.merge_samples (proc)
-               self.color = None
-
-       def merge_samples(self, proc):
-               self.samples.extend (proc.samples)
-               self.samples.sort (key = lambda p: p.time)
-
-       def next(self):
-               global palette_idx
-               palette_idx += HSV_STEP
-               return palette_idx
-
-       def get_color(self):
-               if self.color is None:
-                       i = self.next() % HSV_MAX_MOD
-                       h = 0.0
-                       if i is not 0:
-                               h = (1.0 * i) / HSV_MAX_MOD
-                       s = 0.5
-                       v = 1.0
-                       c = colorsys.hsv_to_rgb (h, s, v)
-                       self.color = (c[0], c[1], c[2], 1.0)
-               return self.color
+    def __init__(self, proc):
+        self.cmd = proc.cmd
+        self.samples = []
+        self.merge_samples (proc)
+        self.color = None
+
+    def merge_samples(self, proc):
+        self.samples.extend (proc.samples)
+        self.samples.sort (key = lambda p: p.time)
+
+    def next(self):
+        global palette_idx
+        palette_idx += HSV_STEP
+        return palette_idx
+
+    def get_color(self):
+        if self.color is None:
+            i = self.next() % HSV_MAX_MOD
+            h = 0.0
+            if i is not 0:
+                h = (1.0 * i) / HSV_MAX_MOD
+            s = 0.5
+            v = 1.0
+            c = colorsys.hsv_to_rgb (h, s, v)
+            self.color = (c[0], c[1], c[2], 1.0)
+        return self.color
 
 
 def draw_cuml_graph(ctx, proc_tree, chart_bounds, duration, sec_w, stat_type):
-       global palette_idx
-       palette_idx = 0
-
-       time_hash = {}
-       total_time = 0.0
-       m_proc_list = {}
-
-       if stat_type is STAT_TYPE_CPU:
-               sample_value = 'cpu'
-       else:
-               sample_value = 'io'
-       for proc in proc_tree.process_list:
-               if elide_bootchart(proc):
-                       continue
-
-               for sample in proc.samples:
-                       total_time += getattr(sample.cpu_sample, sample_value)
-                       if not sample.time in time_hash:
-                               time_hash[sample.time] = 1
-
-               # merge pids with the same cmd
-               if not proc.cmd in m_proc_list:
-                       m_proc_list[proc.cmd] = CumlSample (proc)
-                       continue
-               s = m_proc_list[proc.cmd]
-               s.merge_samples (proc)
-
-       # all the sample times
-       times = sorted(time_hash)
-       if len (times) < 2:
-               print("degenerate boot chart")
-               return
-
-       pix_per_ns = chart_bounds[3] / total_time
-#      print "total time: %g pix-per-ns %g" % (total_time, pix_per_ns)
-
-       # FIXME: we have duplicates in the process list too [!] - why !?
-
-       # Render bottom up, left to right
-       below = {}
-       for time in times:
-               below[time] = chart_bounds[1] + chart_bounds[3]
-
-       # same colors each time we render
-       random.seed (0)
-
-       ctx.set_line_width(1)
-
-       legends = []
-       labels = []
-
-       # render each pid in order
-       for cs in m_proc_list.values():
-               row = {}
-               cuml = 0.0
-
-               # print "pid : %s -> %g samples %d" % (proc.cmd, cuml, len 
(cs.samples))
-               for sample in cs.samples:
-                       cuml += getattr(sample.cpu_sample, sample_value)
-                       row[sample.time] = cuml
-
-               process_total_time = cuml
-
-               # hide really tiny processes
-               if cuml * pix_per_ns <= 2:
-                       continue
-
-               last_time = times[0]
-               y = last_below = below[last_time]
-               last_cuml = cuml = 0.0
-
-               ctx.set_source_rgba(*cs.get_color())
-               for time in times:
-                       render_seg = False
-
-                       # did the underlying trend increase ?
-                       if below[time] != last_below:
-                               last_below = below[last_time]
-                               last_cuml = cuml
-                               render_seg = True
-
-                       # did we move up a pixel increase ?
-                       if time in row:
-                               nc = round (row[time] * pix_per_ns)
-                               if nc != cuml:
-                                       last_cuml = cuml
-                                       cuml = nc
-                                       render_seg = True
-
-#                      if last_cuml > cuml:
-#                              assert fail ... - un-sorted process samples
-
-                       # draw the trailing rectangle from the last time to
-                       # before now, at the height of the last segment.
-                       if render_seg:
-                               w = math.ceil ((time - last_time) * 
chart_bounds[2] / proc_tree.duration) + 1
-                               x = chart_bounds[0] + round((last_time - 
proc_tree.start_time) * chart_bounds[2] / proc_tree.duration)
-                               ctx.rectangle (x, below[last_time] - last_cuml, 
w, last_cuml)
-                               ctx.fill()
-#                              ctx.stroke()
-                               last_time = time
-                               y = below [time] - cuml
-
-                       row[time] = y
-
-               # render the last segment
-               x = chart_bounds[0] + round((last_time - proc_tree.start_time) 
* chart_bounds[2] / proc_tree.duration)
-               y = below[last_time] - cuml
-               ctx.rectangle (x, y, chart_bounds[2] - x, cuml)
-               ctx.fill()
-#              ctx.stroke()
-
-               # render legend if it will fit
-               if cuml > 8:
-                       label = cs.cmd
-                       extnts = ctx.text_extents(label)
-                       label_w = extnts[2]
-                       label_h = extnts[3]
-#                      print "Text extents %g by %g" % (label_w, label_h)
-                       labels.append((label,
-                                      chart_bounds[0] + chart_bounds[2] - 
label_w - off_x * 2,
-                                      y + (cuml + label_h) / 2))
-                       if cs in legends:
-                               print("ARGH - duplicate process in list !")
-
-               legends.append ((cs, process_total_time))
-
-               below = row
-
-       # render grid-lines over the top
-       draw_box_ticks(ctx, chart_bounds, sec_w)
-
-       # render labels
-       for l in labels:
-               draw_text(ctx, l[0], TEXT_COLOR, l[1], l[2])
-
-       # Render legends
-       font_height = 20
-       label_width = 300
-       LEGENDS_PER_COL = 15
-       LEGENDS_TOTAL = 45
-       ctx.set_font_size (TITLE_FONT_SIZE)
-       dur_secs = duration / 100
-       cpu_secs = total_time / 1000000000
-
-       # misleading - with multiple CPUs ...
-#      idle = ((dur_secs - cpu_secs) / dur_secs) * 100.0
-       if stat_type is STAT_TYPE_CPU:
-               label = "Cumulative CPU usage, by process; total CPU: " \
-                       " %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)
-       else:
-               label = "Cumulative I/O usage, by process; total I/O: " \
-                       " %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)
-
-       draw_text(ctx, label, TEXT_COLOR, chart_bounds[0] + off_x,
-                 chart_bounds[1] + font_height)
-
-       i = 0
-       legends = sorted(legends, key=itemgetter(1), reverse=True)
-       ctx.set_font_size(TEXT_FONT_SIZE)
-       for t in legends:
-               cs = t[0]
-               time = t[1]
-               x = chart_bounds[0] + off_x + int (i/LEGENDS_PER_COL) * 
label_width
-               y = chart_bounds[1] + font_height * ((i % LEGENDS_PER_COL) + 2)
-               str = "%s - %.0f(ms) (%2.2f%%)" % (cs.cmd, time/1000000, 
(time/total_time) * 100.0)
-               draw_legend_box(ctx, str, cs.color, x, y, leg_s)
-               i = i + 1
-               if i >= LEGENDS_TOTAL:
-                       break
+    global palette_idx
+    palette_idx = 0
+
+    time_hash = {}
+    total_time = 0.0
+    m_proc_list = {}
+
+    if stat_type is STAT_TYPE_CPU:
+        sample_value = 'cpu'
+    else:
+        sample_value = 'io'
+    for proc in proc_tree.process_list:
+        if elide_bootchart(proc):
+            continue
+
+        for sample in proc.samples:
+            total_time += getattr(sample.cpu_sample, sample_value)
+            if not sample.time in time_hash:
+                time_hash[sample.time] = 1
+
+        # merge pids with the same cmd
+        if not proc.cmd in m_proc_list:
+            m_proc_list[proc.cmd] = CumlSample (proc)
+            continue
+        s = m_proc_list[proc.cmd]
+        s.merge_samples (proc)
+
+    # all the sample times
+    times = sorted(time_hash)
+    if len (times) < 2:
+        print("degenerate boot chart")
+        return
+
+    pix_per_ns = chart_bounds[3] / total_time
+#    print "total time: %g pix-per-ns %g" % (total_time, pix_per_ns)
+
+    # FIXME: we have duplicates in the process list too [!] - why !?
+
+    # Render bottom up, left to right
+    below = {}
+    for time in times:
+        below[time] = chart_bounds[1] + chart_bounds[3]
+
+    # same colors each time we render
+    random.seed (0)
+
+    ctx.set_line_width(1)
+
+    legends = []
+    labels = []
+
+    # render each pid in order
+    for cs in m_proc_list.values():
+        row = {}
+        cuml = 0.0
+
+        # print "pid : %s -> %g samples %d" % (proc.cmd, cuml, len 
(cs.samples))
+        for sample in cs.samples:
+            cuml += getattr(sample.cpu_sample, sample_value)
+            row[sample.time] = cuml
+
+        process_total_time = cuml
+
+        # hide really tiny processes
+        if cuml * pix_per_ns <= 2:
+            continue
+
+        last_time = times[0]
+        y = last_below = below[last_time]
+        last_cuml = cuml = 0.0
+
+        ctx.set_source_rgba(*cs.get_color())
+        for time in times:
+            render_seg = False
+
+            # did the underlying trend increase ?
+            if below[time] != last_below:
+                last_below = below[last_time]
+                last_cuml = cuml
+                render_seg = True
+
+            # did we move up a pixel increase ?
+            if time in row:
+                nc = round (row[time] * pix_per_ns)
+                if nc != cuml:
+                    last_cuml = cuml
+                    cuml = nc
+                    render_seg = True
+
+#            if last_cuml > cuml:
+#                assert fail ... - un-sorted process samples
+
+            # draw the trailing rectangle from the last time to
+            # before now, at the height of the last segment.
+            if render_seg:
+                w = math.ceil ((time - last_time) * chart_bounds[2] / 
proc_tree.duration) + 1
+                x = chart_bounds[0] + round((last_time - proc_tree.start_time) 
* chart_bounds[2] / proc_tree.duration)
+                ctx.rectangle (x, below[last_time] - last_cuml, w, last_cuml)
+                ctx.fill()
+#                ctx.stroke()
+                last_time = time
+                y = below [time] - cuml
+
+            row[time] = y
+
+        # render the last segment
+        x = chart_bounds[0] + round((last_time - proc_tree.start_time) * 
chart_bounds[2] / proc_tree.duration)
+        y = below[last_time] - cuml
+        ctx.rectangle (x, y, chart_bounds[2] - x, cuml)
+        ctx.fill()
+#        ctx.stroke()
+
+        # render legend if it will fit
+        if cuml > 8:
+            label = cs.cmd
+            extnts = ctx.text_extents(label)
+            label_w = extnts[2]
+            label_h = extnts[3]
+#            print "Text extents %g by %g" % (label_w, label_h)
+            labels.append((label,
+                       chart_bounds[0] + chart_bounds[2] - label_w - off_x * 2,
+                       y + (cuml + label_h) / 2))
+            if cs in legends:
+                print("ARGH - duplicate process in list !")
+
+        legends.append ((cs, process_total_time))
+
+        below = row
+
+    # render grid-lines over the top
+    draw_box_ticks(ctx, chart_bounds, sec_w)
+
+    # render labels
+    for l in labels:
+        draw_text(ctx, l[0], TEXT_COLOR, l[1], l[2])
+
+    # Render legends
+    font_height = 20
+    label_width = 300
+    LEGENDS_PER_COL = 15
+    LEGENDS_TOTAL = 45
+    ctx.set_font_size (TITLE_FONT_SIZE)
+    dur_secs = duration / 100
+    cpu_secs = total_time / 1000000000
+
+    # misleading - with multiple CPUs ...
+#    idle = ((dur_secs - cpu_secs) / dur_secs) * 100.0
+    if stat_type is STAT_TYPE_CPU:
+        label = "Cumulative CPU usage, by process; total CPU: " \
+            " %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)
+    else:
+        label = "Cumulative I/O usage, by process; total I/O: " \
+            " %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)
+
+    draw_text(ctx, label, TEXT_COLOR, chart_bounds[0] + off_x,
+          chart_bounds[1] + font_height)
+
+    i = 0
+    legends = sorted(legends, key=itemgetter(1), reverse=True)
+    ctx.set_font_size(TEXT_FONT_SIZE)
+    for t in legends:
+        cs = t[0]
+        time = t[1]
+        x = chart_bounds[0] + off_x + int (i/LEGENDS_PER_COL) * label_width
+        y = chart_bounds[1] + font_height * ((i % LEGENDS_PER_COL) + 2)
+        str = "%s - %.0f(ms) (%2.2f%%)" % (cs.cmd, time/1000000, 
(time/total_time) * 100.0)
+        draw_legend_box(ctx, str, cs.color, x, y, leg_s)
+        i = i + 1
+        if i >= LEGENDS_TOTAL:
+            break
-- 
2.20.1

-- 
_______________________________________________
Openembedded-core mailing list
Openembedded-core@lists.openembedded.org
http://lists.openembedded.org/mailman/listinfo/openembedded-core

Reply via email to