The new prime generator does not ensure that generated primes are "safe" modulo 2, 3, 5, 7 or 11. In particular (p-1)/2 might not be co-prime to 2310.
The patch below my signature addresses this problem. -- Viktor. diff --git a/crypto/bn/bn_prime.c b/crypto/bn/bn_prime.c index 2d66b61..bb36124 100644 --- a/crypto/bn/bn_prime.c +++ b/crypto/bn/bn_prime.c @@ -132,46 +132,22 @@ static int probable_prime(BIGNUM *rnd, int bits); static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); -static const int prime_offsets[480] = { - 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, - 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, - 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229, - 233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, - 299, 307, 311, 313, 317, 323, 331, 337, 347, 349, 353, 359, 361, 367, - 373, 377, 379, 383, 389, 391, 397, 401, 403, 409, 419, 421, 431, 433, - 437, 439, 443, 449, 457, 461, 463, 467, 479, 481, 487, 491, 493, 499, - 503, 509, 521, 523, 527, 529, 533, 541, 547, 551, 557, 559, 563, 569, - 571, 577, 587, 589, 593, 599, 601, 607, 611, 613, 617, 619, 629, 631, - 641, 643, 647, 653, 659, 661, 667, 673, 677, 683, 689, 691, 697, 701, - 703, 709, 713, 719, 727, 731, 733, 739, 743, 751, 757, 761, 767, 769, - 773, 779, 787, 793, 797, 799, 809, 811, 817, 821, 823, 827, 829, 839, - 841, 851, 853, 857, 859, 863, 871, 877, 881, 883, 887, 893, 899, 901, - 907, 911, 919, 923, 929, 937, 941, 943, 947, 949, 953, 961, 967, 971, - 977, 983, 989, 991, 997, 1003, 1007, 1009, 1013, 1019, 1021, 1027, 1031, - 1033, 1037, 1039, 1049, 1051, 1061, 1063, 1069, 1073, 1079, 1081, 1087, - 1091, 1093, 1097, 1103, 1109, 1117, 1121, 1123, 1129, 1139, 1147, 1151, - 1153, 1157, 1159, 1163, 1171, 1181, 1187, 1189, 1193, 1201, 1207, 1213, - 1217, 1219, 1223, 1229, 1231, 1237, 1241, 1247, 1249, 1259, 1261, 1271, - 1273, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1313, 1319, - 1321, 1327, 1333, 1339, 1343, 1349, 1357, 1361, 1363, 1367, 1369, 1373, - 1381, 1387, 1391, 1399, 1403, 1409, 1411, 1417, 1423, 1427, 1429, 1433, - 1439, 1447, 1451, 1453, 1457, 1459, 1469, 1471, 1481, 1483, 1487, 1489, - 1493, 1499, 1501, 1511, 1513, 1517, 1523, 1531, 1537, 1541, 1543, 1549, - 1553, 1559, 1567, 1571, 1577, 1579, 1583, 1591, 1597, 1601, 1607, 1609, - 1613, 1619, 1621, 1627, 1633, 1637, 1643, 1649, 1651, 1657, 1663, 1667, - 1669, 1679, 1681, 1691, 1693, 1697, 1699, 1703, 1709, 1711, 1717, 1721, - 1723, 1733, 1739, 1741, 1747, 1751, 1753, 1759, 1763, 1769, 1777, 1781, - 1783, 1787, 1789, 1801, 1807, 1811, 1817, 1819, 1823, 1829, 1831, 1843, - 1847, 1849, 1853, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1891, 1901, - 1907, 1909, 1913, 1919, 1921, 1927, 1931, 1933, 1937, 1943, 1949, 1951, - 1957, 1961, 1963, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, - 2021, 2027, 2029, 2033, 2039, 2041, 2047, 2053, 2059, 2063, 2069, 2071, - 2077, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2117, 2119, 2129, 2131, - 2137, 2141, 2143, 2147, 2153, 2159, 2161, 2171, 2173, 2179, 2183, 2197, - 2201, 2203, 2207, 2209, 2213, 2221, 2227, 2231, 2237, 2239, 2243, 2249, - 2251, 2257, 2263, 2267, 2269, 2273, 2279, 2281, 2287, 2291, 2293, 2297, - 2309, 2311 }; -static const int prime_offset_count = 480; +/* + * Residues $r$ modulo $2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$ for which + * both $r$ and $(r-1)/2$ are co-prime to $2310$. + */ +static const int prime_offsets[68] = { + 47, 59, 83, 107, 167, 179, 227, 263, + 299, 347, 359, 383, 443, 467, 479, 503, + 527, 563, 587, 599, 647, 719, 767, 779, + 839, 863, 887, 899, 923, 983, 1007, 1019, + 1103, 1139, 1187, 1223, 1259, 1283, 1307, 1319, + 1367, 1403, 1427, 1439, 1487, 1523, 1559, 1619, + 1643, 1679, 1703, 1763, 1787, 1823, 1847, 1907, + 1943, 1979, 2027, 2039, 2063, 2099, 2147, 2159, + 2183, 2207, 2243, 2279 + }; +static const int prime_offset_count = 68; static const int prime_multiplier = 2310; static const int prime_multiplier_bits = 11; /* 2^|prime_multiplier_bits| <= |prime_multiplier| */ diff --git a/tools/primes.py b/tools/primes.py index 61de99f..0cdecb7 100644 --- a/tools/primes.py +++ b/tools/primes.py @@ -1,21 +1,37 @@ -primes = [2, 3, 5, 7, 11] -safe = False # Not sure if the period's right on safe primes. +# Odd primes < 13 +# +primes = [3, 5, 7, 11] -muliplier = 1 if not safe else 2 +multiplier = 2 for p in primes: - muliplier *= p + multiplier *= p offsets = [] -for x in range(3, muliplier + 3, 2): - prime = True + +# We only test residues 'r' that are 3 mod 4, since both r and (r-1)/2 +# need to be odd. We don't need to test for divisibility by 2, which +# is why 2 is not in the prime list. +# +for r in range(3, multiplier - 1, 4): + coprime = True for p in primes: - if not x % p or (safe and not ((x - 1) / 2) % p): - prime = False + if r % p <= 1: + coprime = False break - if prime: - offsets.append(x) + if coprime: + offsets.append(r) + +count = len(offsets); +print "static const int prime_offsets[%d] = {\n\t" % (count), +for i in range(0, count): + print "%4d,%s" % (offsets[i], " " if (i % 8 < 7) else "\n\t"), +print "\n\t};" -print(offsets) -print(len(offsets)) -print(muliplier) +print "static const int prime_offset_count = %d;\n" % (count), +print "static const int prime_multiplier = %d;\n" % (multiplier), +bits = 0; +while multiplier > 1: + multiplier /= 2 + bits += 1 +print "static const int prime_multiplier_bits = %d;\n" % (bits), ______________________________________________________________________ OpenSSL Project http://www.openssl.org Development Mailing List openssl-dev@openssl.org Automated List Manager majord...@openssl.org