The new prime generator does not ensure that generated primes are
"safe" modulo 2, 3, 5, 7 or 11. In particular (p-1)/2 might not
be co-prime to 2310.

The patch below my signature addresses this problem.

-- 
        Viktor.

diff --git a/crypto/bn/bn_prime.c b/crypto/bn/bn_prime.c
index 2d66b61..bb36124 100644
--- a/crypto/bn/bn_prime.c
+++ b/crypto/bn/bn_prime.c
@@ -132,46 +132,22 @@ static int probable_prime(BIGNUM *rnd, int bits);
 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
        const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
 
-static const int prime_offsets[480] = {
-       13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
-       89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
-       167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229,
-       233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293,
-       299, 307, 311, 313, 317, 323, 331, 337, 347, 349, 353, 359, 361, 367,
-       373, 377, 379, 383, 389, 391, 397, 401, 403, 409, 419, 421, 431, 433,
-       437, 439, 443, 449, 457, 461, 463, 467, 479, 481, 487, 491, 493, 499,
-       503, 509, 521, 523, 527, 529, 533, 541, 547, 551, 557, 559, 563, 569,
-       571, 577, 587, 589, 593, 599, 601, 607, 611, 613, 617, 619, 629, 631,
-       641, 643, 647, 653, 659, 661, 667, 673, 677, 683, 689, 691, 697, 701,
-       703, 709, 713, 719, 727, 731, 733, 739, 743, 751, 757, 761, 767, 769,
-       773, 779, 787, 793, 797, 799, 809, 811, 817, 821, 823, 827, 829, 839,
-       841, 851, 853, 857, 859, 863, 871, 877, 881, 883, 887, 893, 899, 901,
-       907, 911, 919, 923, 929, 937, 941, 943, 947, 949, 953, 961, 967, 971,
-       977, 983, 989, 991, 997, 1003, 1007, 1009, 1013, 1019, 1021, 1027, 1031,
-       1033, 1037, 1039, 1049, 1051, 1061, 1063, 1069, 1073, 1079, 1081, 1087,
-       1091, 1093, 1097, 1103, 1109, 1117, 1121, 1123, 1129, 1139, 1147, 1151,
-       1153, 1157, 1159, 1163, 1171, 1181, 1187, 1189, 1193, 1201, 1207, 1213,
-       1217, 1219, 1223, 1229, 1231, 1237, 1241, 1247, 1249, 1259, 1261, 1271,
-       1273, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1313, 1319,
-       1321, 1327, 1333, 1339, 1343, 1349, 1357, 1361, 1363, 1367, 1369, 1373,
-       1381, 1387, 1391, 1399, 1403, 1409, 1411, 1417, 1423, 1427, 1429, 1433,
-       1439, 1447, 1451, 1453, 1457, 1459, 1469, 1471, 1481, 1483, 1487, 1489,
-       1493, 1499, 1501, 1511, 1513, 1517, 1523, 1531, 1537, 1541, 1543, 1549,
-       1553, 1559, 1567, 1571, 1577, 1579, 1583, 1591, 1597, 1601, 1607, 1609,
-       1613, 1619, 1621, 1627, 1633, 1637, 1643, 1649, 1651, 1657, 1663, 1667,
-       1669, 1679, 1681, 1691, 1693, 1697, 1699, 1703, 1709, 1711, 1717, 1721,
-       1723, 1733, 1739, 1741, 1747, 1751, 1753, 1759, 1763, 1769, 1777, 1781,
-       1783, 1787, 1789, 1801, 1807, 1811, 1817, 1819, 1823, 1829, 1831, 1843,
-       1847, 1849, 1853, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1891, 1901,
-       1907, 1909, 1913, 1919, 1921, 1927, 1931, 1933, 1937, 1943, 1949, 1951,
-       1957, 1961, 1963, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017,
-       2021, 2027, 2029, 2033, 2039, 2041, 2047, 2053, 2059, 2063, 2069, 2071,
-       2077, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2117, 2119, 2129, 2131,
-       2137, 2141, 2143, 2147, 2153, 2159, 2161, 2171, 2173, 2179, 2183, 2197,
-       2201, 2203, 2207, 2209, 2213, 2221, 2227, 2231, 2237, 2239, 2243, 2249,
-       2251, 2257, 2263, 2267, 2269, 2273, 2279, 2281, 2287, 2291, 2293, 2297,
-       2309, 2311 };
-static const int prime_offset_count = 480;
+/*
+ * Residues $r$ modulo $2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$ for which
+ * both $r$ and $(r-1)/2$ are co-prime to $2310$.
+ */
+static const int prime_offsets[68] = {
+         47,   59,   83,  107,  167,  179,  227,  263,
+        299,  347,  359,  383,  443,  467,  479,  503,
+        527,  563,  587,  599,  647,  719,  767,  779,
+        839,  863,  887,  899,  923,  983, 1007, 1019,
+       1103, 1139, 1187, 1223, 1259, 1283, 1307, 1319,
+       1367, 1403, 1427, 1439, 1487, 1523, 1559, 1619,
+       1643, 1679, 1703, 1763, 1787, 1823, 1847, 1907,
+       1943, 1979, 2027, 2039, 2063, 2099, 2147, 2159,
+       2183, 2207, 2243, 2279
+       };
+static const int prime_offset_count = 68;
 static const int prime_multiplier = 2310;
 static const int prime_multiplier_bits = 11; /* 2^|prime_multiplier_bits|
                                                <= |prime_multiplier| */
diff --git a/tools/primes.py b/tools/primes.py
index 61de99f..0cdecb7 100644
--- a/tools/primes.py
+++ b/tools/primes.py
@@ -1,21 +1,37 @@
-primes = [2, 3, 5, 7, 11]
-safe = False  # Not sure if the period's right on safe primes.
+# Odd primes < 13
+#
+primes = [3, 5, 7, 11]
 
-muliplier = 1 if not safe else 2
+multiplier = 2
 for p in primes:
-    muliplier *= p
+    multiplier *= p
 
 offsets = []
-for x in range(3, muliplier + 3, 2):
-    prime = True
+
+# We only test residues 'r' that are 3 mod 4, since both r and (r-1)/2
+# need to be odd.  We don't need to test for divisibility by 2, which
+# is why 2 is not in the prime list.
+#
+for r in range(3, multiplier - 1, 4):
+    coprime = True
     for p in primes:
-        if not x % p or (safe and not ((x - 1) / 2) % p):
-            prime = False
+        if r % p <= 1:
+            coprime = False
             break
 
-    if prime:
-        offsets.append(x)
+    if coprime:
+        offsets.append(r)
+
+count = len(offsets);
+print "static const int prime_offsets[%d] = {\n\t" % (count),
+for i in range(0, count):
+    print "%4d,%s" % (offsets[i], " " if (i % 8 < 7) else "\n\t"),
+print "\n\t};"
 
-print(offsets)
-print(len(offsets))
-print(muliplier)
+print "static const int prime_offset_count = %d;\n" % (count),
+print "static const int prime_multiplier = %d;\n" % (multiplier),
+bits = 0;
+while multiplier > 1:
+    multiplier /= 2
+    bits += 1
+print "static const int prime_multiplier_bits = %d;\n" % (bits),
______________________________________________________________________
OpenSSL Project                                 http://www.openssl.org
Development Mailing List                       openssl-dev@openssl.org
Automated List Manager                           majord...@openssl.org

Reply via email to