A report of a buffer overrun in RSAREF v.2 was posted to Bugtraq,
12/1/99, by Gerardo Richarte <[EMAIL PROTECTED]>

        Core SDI (Seguridad de la Informacion), of Buenos Aires,  moderates
the Spanish language version of BugTraq.  Last year, Core SDI discovered a
vulnerability in SSH (up to v. 1.2.23) which permited an  attacker to
execute arbitrary commands on the SSH server.  Good work.  See:
<http://www.CORE-SDI.COM/english/ssh/index.html>

        Suerte,
                        _Vin
------------------------------------------------------------------------


                             CORE SDI S.A.
                        Buenos Aires, Argentina
                       <http://www.core-sdi.com>


                        CORE SDI Security Advisory
                            December 1st., 1999

                        Buffer overflow in RSAREF2

-
-------------------------------------------------------------------------

While researching the exploitability of a buffer overflow in
SSH up to version 1.2.27, we discovered a second buffer overflow
in the implmementation of the RSA algorithm in RSAREF2 from
RSA Data Security.

This advisory addresses the details of the bug discovered,
the details are somewhat focused on the ability to exploit the bug
in SSH compiled with RSAREF2, but its extensible to any software product
that uses RSAREF2


Problem description
~~~~~~~~~~~~~~~~~~~~

RSAREF2 API exports 4 functions in rsa.c:

int RSAPublicEncrypt()
int RSAPrivateEncrypt()
int RSAPublicDecrypt()
int RSAPrivateDecrypt()

The 4 functions define a local variable pkcsBlock of fixed length
MAX_RSA_MODULUS_LEN (128 bytes)

In order to perform the RSA operations, the functions call the internal
functions RSAPrivateBlock() and RSAPublicBlock().

RSAPrivateDecrypt() and RSAPublicDecrypt() pass a pointer to the local
variable pkcsBlock to be used as the output buffer for RSAPublicBlock()
and RSAPrivateBlock() respectively.  The two functions then perform the
RSA operations and copy the results to the output buffer using the
NN_Encode() and NN_Decode() functions.

Lack of strict bounds checking and proper validation of input parameters
in all these functions allows an attacker to overflow the pkcsBLock
variable and overwrite the stack, making it possible to execute arbitrary
commands on the vulnerable system.


Technical details
~~~~~~~~~~~~~~~~~
As an axample we will describe the vulnerability focusing on the decrypt
operations performed in RSAREF2 based on the private key. Such
operations are done with the function RSAPrivateDecrypt() defined as follows
in rsa.c:

/* RSA private-key decryption, according to PKCS #1.
 */
int RSAPrivateDecrypt (output, outputLen, input, inputLen, privateKey)
unsigned char *output;                                      /* output
block */
unsigned int *outputLen;                          /* length of output
block */
unsigned char *input;                                        /* input
block */
unsigned int inputLen;                             /* length of input
block */
R_RSA_PRIVATE_KEY *privateKey;                           /* RSA private
key */
{
  int status;
  unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
  unsigned int i, modulusLen, pkcsBlockLen;

  modulusLen = (privateKey->bits + 7) / 8;
  if (inputLen > modulusLen)
    return (RE_LEN);

  if (status = RSAPrivateBlock
      (pkcsBlock, &pkcsBlockLen, input, inputLen, privateKey))
    return (status);

 ...


  return (0);
}

Note that inputLen is checked against a transformation of privateKey's
bits field, to satisfy this constrain an attacker must alter this field in
privateKey, but this, almost by miracle doesn't affect the final result.

Notese que se hace una verificacion sobre la longitud del buffer de
entrada, comparandola con una transformacion del campo bits de la clave
privada (privateKey), para que esta validacion sea satisfecha es necesario
cambiar este campo en privateKey, pero esto, casi milagrosamente no afecta
al resultado de la encripcion.

As we can see, RSAPrivateDecrypt() calls RSAPrivateBlock() passing
pkcsBlock as the output buffer, no length checking is performed to ensure that
pkcsBlock will not be overrun. RSAPrivateBLock() performs the RSA private
key operations ans is define as follows:

/* Raw RSA private-key operation. Output has same length as modulus.

   Assumes inputLen < length of modulus.
   Requires input < modulus.
 */
static int RSAPrivateBlock (output, outputLen, input, inputLen,
privateKey)
unsigned char *output;                                      /* output
block */
unsigned int *outputLen;                          /* length of output
block */
unsigned char *input;                                        /* input
block */
unsigned int inputLen;                             /* length of input
block */
R_RSA_PRIVATE_KEY *privateKey;                           /* RSA private
key */
{
  NN_DIGIT c[MAX_NN_DIGITS], cP[MAX_NN_DIGITS], cQ[MAX_NN_DIGITS],
    dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], mP[MAX_NN_DIGITS],
    mQ[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS],
q[MAX_NN_DIGITS],
    qInv[MAX_NN_DIGITS], t[MAX_NN_DIGITS];
  unsigned int cDigits, nDigits, pDigits;

  NN_Decode (c, MAX_NN_DIGITS, input, inputLen);
...
  cDigits = NN_Digits (c, MAX_NN_DIGITS);
  nDigits = NN_Digits (n, MAX_NN_DIGITS);
  pDigits = NN_Digits (p, MAX_NN_DIGITS);

  /* Compute mP = cP^dP mod p  and  mQ = cQ^dQ mod q. (Assumes q has
     length at most pDigits, i.e., p > q.)
   */

...
  /* Chinese Remainder Theorem:
       m = ((((mP - mQ) mod p) * qInv) mod p) * q + mQ.
   */
  if (NN_Cmp (mP, mQ, pDigits) >= 0)
    NN_Sub (t, mP, mQ, pDigits);
  else {
    NN_Sub (t, mQ, mP, pDigits);
    NN_Sub (t, p, t, pDigits);
  }
  NN_ModMult (t, t, qInv, p, pDigits);
  NN_Mult (t, t, q, pDigits);
  NN_Add (t, t, mQ, nDigits);

  *outputLen = (privateKey->bits + 7) / 8;
  NN_Encode (output, *outputLen, t, nDigits);

...

  return (0);
}

RSAPrivateBlock() calls NN_Encode() to encode and copy the results into
the output buffer (a pointer to the pkcsBlock variable in RSAPublicDecrypt()
function), the length of the output buffer is calculated based on the
bits field of the pivateKey structure, passed originally to
RSAPublicDecrypt() and does not take into account the fixed length
characteristics of the output buffer.

The NN_Encode() function is defined as follows:


/* Encodes b into character string a, where character string is ordered
   from most to least significant.

   Lengths: a[len], b[digits].
   Assumes NN_Bits (b, digits) <= 8 * len. (Otherwise most significant
   digits are truncated.)
 */
void NN_Encode (a, len, b, digits)
NN_DIGIT *b;
unsigned char *a;
unsigned int digits, len;
{
  NN_DIGIT t;
  int j;
  unsigned int i, u;

  for (i = 0, j = len - 1; i < digits && j >= 0; i++) {
    t = b[i];
    for (u = 0; j >= 0 && u < NN_DIGIT_BITS; j--, u += 8)
      a[j] = (unsigned char)(t >> u);
  }

  for (; j >= 0; j--)
    a[j] = 0;
}

NN_Encode() encodes and copies to 'a' (the output buffer, pkcsBLock)
'digits' bytes of 'b' (the results of the RSA private key operation) from
the end
to the start of the buffer, starting at position 'len', the modulus length of
the private key passed to RSAPrivateDecrypt().

Providing a suitable modulus length to RSAPrivateDecrypt() it is
possible to force NN_Encode() to copy data beyond the bounds of pkcsBLock
and overwrite the return address of RSAPRivateDecrypt(), gaining control of
the processor and being able to execute code located elsewhere in the
vulnerable program.

The exploitability of this bug in SSH comes from the fact that a bug in
SSH itself <http://www.securityfocus.com/vdb/bottom.html?vid=797> discussed
and published in the vuln-dev and bugtraq mailing lists, allows a remote
client to provide a suitable private key to the RSAREF functions.

The same problem is present in the RSAPublicDecrypt() function, and its
exploitability might be even easier, since its much easier to provide a
malicious public key to any software package that supports RSA and uses
the RSAREF2 implementation.


Impact
~~~~~~
 It is possible to execute arbitrary commands as
 the user that runs the RSAREF2 code.

 For SSH up to 1.2.27 compiled with RSAREF2 this implies the
 remote execution of arbitrary commands as root.


Fix information
~~~~~~~~~~~~~~~

 RSA Security was contacted and replied that they don't support RSAREF2
anymore. For futher details you may contact John Linn <[EMAIL PROTECTED]>

 A patch is provided below, please read carefully the file license.txt
from the  RSAREF2 distribution before applying it


Vulnerable systems
~~~~~~~~~~~~~~~~~~
- - SSH up to 1.2.27 compiled with RSAREF2 (RSAREF is not compiled in by
default but it's required in some cases in USA)

- - Possibly any other software packages that uses RSAREF2

Additional information
~~~~~~~~~~~~~~~~~~~~~~
 This vulnerability was discovered by Alberto Solino
<[EMAIL PROTECTED]>
 and Gerardo Richarte <[EMAIL PROTECTED]> at Core SDI S.A.
<http://www.core-sdi.com>

Copyright Notice:
~~~~~~~~~~~~~~~~~
 The contents of this advisory are copyright (c) 1999 CORE SDI S.A. and
may be  distributed freely provided that no fee is charged for this
distribution and  proper credit is given.

Fix
~~~

 Copy de remining of this message to a file named rsaref.patch in
 rsaref2/source, and apply with 'patch <rsaref.patch'

- --- rsa.original.c    Wed Dec  1 11:29:57 1999
+++ rsa.c       Wed Dec  1 11:45:51 1999
@@ -33,6 +33,8 @@
   unsigned char byte, pkcsBlock[MAX_RSA_MODULUS_LEN];
   unsigned int i, modulusLen;

+  if (inputLen+3>MAX_RSA_MODULUS_LEN) return (RE_LEN);
+
   modulusLen = (publicKey->bits + 7) / 8;
   if (inputLen + 11 > modulusLen)
     return (RE_LEN);
@@ -78,6 +80,8 @@
   unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
   unsigned int i, modulusLen, pkcsBlockLen;

+  if (inputLen>MAX_RSA_MODULUS_LEN) return (RE_LEN);
+
   modulusLen = (publicKey->bits + 7) / 8;
   if (inputLen > modulusLen)
     return (RE_LEN);
@@ -129,6 +133,8 @@
   unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
   unsigned int i, modulusLen;

+  if (inputLen+3>MAX_RSA_MODULUS_LEN) return (RE_LEN);
+
   modulusLen = (privateKey->bits + 7) / 8;
   if (inputLen + 11 > modulusLen)
     return (RE_LEN);
@@ -168,6 +174,8 @@
   unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
   unsigned int i, modulusLen, pkcsBlockLen;

+  if (inputLen>MAX_RSA_MODULUS_LEN) return (RE_LEN);
+
   modulusLen = (privateKey->bits + 7) / 8;
   if (inputLen > modulusLen)
     return (RE_LEN);


-----BEGIN PGP SIGNATURE-----
Version: PGPfreeware 5.0i for non-commercial use
Charset: noconv

iQA/AwUBOEXStUBPS1M5RMLQEQLf4QCg6kaXLdSnzgfbgVXztOD38MFTX7AAmwTG
F9dMkpeKR3EiiuDSCwi4tNrd
=NNXd
-----END PGP SIGNATURE-----

--- For a personal reply use [EMAIL PROTECTED]


______________________________________________________________________
OpenSSL Project                                 http://www.openssl.org
User Support Mailing List                    [EMAIL PROTECTED]
Automated List Manager                           [EMAIL PROTECTED]

Reply via email to