Note, the numerical problems that we have look a lot like a race condition of some sort. Happens with empty processors and goes away under cuda-memcheck (valgrind like thing).
I did try adding WaitForGPU() , but maybe I did do it right or there are other synchronization mechanisms. On Mon, Sep 23, 2019 at 6:28 PM Zhang, Junchao via petsc-dev < petsc-dev@mcs.anl.gov> wrote: > It looks cusparsestruct->stream is always created (not NULL). I don't > know logic of the "if (!cusparsestruct->stream)". > --Junchao Zhang > > > On Mon, Sep 23, 2019 at 5:04 PM Mills, Richard Tran via petsc-dev < > petsc-dev@mcs.anl.gov> wrote: > >> In MatMultAdd_SeqAIJCUSPARSE, before Junchao's changes, towards the end >> of the function it had >> >> if (!yy) { /* MatMult */ >> if (!cusparsestruct->stream) { >> ierr = WaitForGPU();CHKERRCUDA(ierr); >> } >> } >> >> I assume we don't need the logic to do this only in the MatMult() with no >> add case and should just do this all the time, for the purposes of timing >> if no other reason. Is there some reason to NOT do this because of worries >> the about effects that these WaitForGPU() invocations might have on >> performance? >> >> I notice other problems in aijcusparse.cu, now that I look closer. In >> MatMultTransposeAdd_SeqAIJCUSPARSE(), I see that we have GPU timing calls >> around the cusparse_csr_spmv() (but no WaitForGPU() inside the timed >> region). I believe this is another area in which we get a meaningless >> timing. It looks like we need a WaitForGPU() there, and then maybe inside >> the timed region handling the scatter. (I don't know if this stuff happens >> asynchronously or not.) But do we potentially want two WaitForGPU() calls >> in one function, just to help with getting timings? I don't have a good >> idea of how much overhead this adds. >> >> --Richard >> >> On 9/21/19 12:03 PM, Zhang, Junchao via petsc-dev wrote: >> >> I made the following changes: >> 1) In MatMultAdd_SeqAIJCUSPARSE, use this code sequence at the end >> ierr = WaitForGPU();CHKERRCUDA(ierr); >> ierr = PetscLogGpuTimeEnd();CHKERRQ(ierr); >> ierr = PetscLogGpuFlops(2.0*a->nz);CHKERRQ(ierr); >> PetscFunctionReturn(0); >> 2) In MatMult_MPIAIJCUSPARSE, use the following code sequence. The old >> code swapped the first two lines. Since with >> -log_view, MatMultAdd_SeqAIJCUSPARSE is blocking, I changed the order to >> have better overlap. >> ierr = >> VecScatterBegin(a->Mvctx,xx,a->lvec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr); >> ierr = (*a->A->ops->mult)(a->A,xx,yy);CHKERRQ(ierr); >> ierr = >> VecScatterEnd(a->Mvctx,xx,a->lvec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr); >> ierr = (*a->B->ops->multadd)(a->B,a->lvec,yy,yy);CHKERRQ(ierr); >> 3) Log time directly in the test code so we can also know execution >> time without -log_view (hence cuda synchronization). I manually calculated >> the Total Mflop/s for these cases for easy comparison. >> >> <<Note the CPU versions are copied from yesterday's results>> >> >> >> ------------------------------------------------------------------------------------------------------------------------ >> Event Count Time (sec) Flop >> --- Global --- --- Stage ---- Total GPU - CpuToGpu - - >> GpuToCpu - GPU >> Max Ratio Max Ratio Max Ratio Mess AvgLen >> Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s Mflop/s Count Size >> Count Size %F >> >> --------------------------------------------------------------------------------------------------------------------------------------------------------------- >> 6 MPI ranks, >> MatMult 100 1.0 1.1895e+01 1.0 9.63e+09 1.1 2.8e+03 2.2e+05 >> 0.0e+00 24 99 97 18 0 100100100100 0 4743 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecScatterBegin 100 1.0 4.9145e-02 3.0 0.00e+00 0.0 2.8e+03 2.2e+05 >> 0.0e+00 0 0 97 18 0 0 0100100 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecScatterEnd 100 1.0 2.9441e+00 133 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 3 0 0 0 0 13 0 0 0 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> >> 24 MPI ranks >> MatMult 100 1.0 3.1431e+00 1.0 2.63e+09 1.2 1.9e+04 5.9e+04 >> 0.0e+00 8 99 97 25 0 100100100100 0 17948 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecScatterBegin 100 1.0 2.0583e-02 2.3 0.00e+00 0.0 1.9e+04 5.9e+04 >> 0.0e+00 0 0 97 25 0 0 0100100 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecScatterEnd 100 1.0 1.0639e+0050.0 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 2 0 0 0 0 19 0 0 0 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> >> 42 MPI ranks >> MatMult 100 1.0 2.0519e+00 1.0 1.52e+09 1.3 3.5e+04 4.1e+04 >> 0.0e+00 23 99 97 30 0 100100100100 0 27493 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecScatterBegin 100 1.0 2.0971e-02 3.4 0.00e+00 0.0 3.5e+04 4.1e+04 >> 0.0e+00 0 0 97 30 0 1 0100100 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecScatterEnd 100 1.0 8.5184e-0162.0 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 6 0 0 0 0 24 0 0 0 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> >> 6 MPI ranks + 6 GPUs + regular SF + log_view >> MatMult 100 1.0 1.6863e-01 1.0 9.66e+09 1.1 2.8e+03 2.2e+05 >> 0.0e+00 0 99 97 18 0 100100100100 0 335743 629278 100 1.02e+02 100 >> 2.69e+02 100 >> VecScatterBegin 100 1.0 5.0157e-02 1.6 0.00e+00 0.0 2.8e+03 2.2e+05 >> 0.0e+00 0 0 97 18 0 24 0100100 0 0 0 0 0.00e+00 100 >> 2.69e+02 0 >> VecScatterEnd 100 1.0 4.9155e-02 2.5 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 0 0 0 0 0 20 0 0 0 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecCUDACopyTo 100 1.0 9.5078e-03 2.0 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 0 0 0 0 0 4 0 0 0 0 0 0 100 1.02e+02 0 >> 0.00e+00 0 >> VecCopyFromSome 100 1.0 2.8485e-02 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 0 0 0 0 0 14 0 0 0 0 0 0 0 0.00e+00 100 >> 2.69e+02 0 >> >> 6 MPI ranks + 6 GPUs + regular SF + No log_view >> MatMult: 100 1.0 1.4180e-01 >> 399268 >> >> 6 MPI ranks + 6 GPUs + CUDA-aware SF + log_view >> MatMult 100 1.0 1.1053e-01 1.0 9.66e+09 1.1 2.8e+03 2.2e+05 >> 0.0e+00 1 99 97 18 0 100100100100 0 512224 642075 0 0.00e+00 0 >> 0.00e+00 100 >> VecScatterBegin 100 1.0 8.3418e-03 1.5 0.00e+00 0.0 2.8e+03 2.2e+05 >> 0.0e+00 0 0 97 18 0 6 0100100 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecScatterEnd 100 1.0 2.2619e-02 1.6 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 0 0 0 0 0 16 0 0 0 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> >> 6 MPI ranks + 6 GPUs + CUDA-aware SF + No log_view >> MatMult: 100 1.0 9.8344e-02 >> 575717 >> >> 24 MPI ranks + 6 GPUs + regular SF + log_view >> MatMult 100 1.0 1.1572e-01 1.0 2.63e+09 1.2 1.9e+04 5.9e+04 >> 0.0e+00 0 99 97 25 0 100100100100 0 489223 708601 100 4.61e+01 100 >> 6.72e+01 100 >> VecScatterBegin 100 1.0 2.0641e-02 2.0 0.00e+00 0.0 1.9e+04 5.9e+04 >> 0.0e+00 0 0 97 25 0 13 0100100 0 0 0 0 0.00e+00 100 >> 6.72e+01 0 >> VecScatterEnd 100 1.0 6.8114e-02 5.6 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 0 0 0 0 0 38 0 0 0 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecCUDACopyTo 100 1.0 6.6646e-03 2.5 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 0 0 0 0 0 3 0 0 0 0 0 0 100 4.61e+01 0 >> 0.00e+00 0 >> VecCopyFromSome 100 1.0 1.0546e-02 1.7 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 0 0 0 0 0 7 0 0 0 0 0 0 0 0.00e+00 100 >> 6.72e+01 0 >> >> 24 MPI ranks + 6 GPUs + regular SF + No log_view >> MatMult: 100 1.0 9.8254e-02 >> 576201 >> >> 24 MPI ranks + 6 GPUs + CUDA-aware SF + log_view >> MatMult 100 1.0 1.1602e-01 1.0 2.63e+09 1.2 1.9e+04 5.9e+04 >> 0.0e+00 1 99 97 25 0 100100100100 0 487956 707524 0 0.00e+00 0 >> 0.00e+00 100 >> VecScatterBegin 100 1.0 2.7088e-02 7.0 0.00e+00 0.0 1.9e+04 5.9e+04 >> 0.0e+00 0 0 97 25 0 8 0100100 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> VecScatterEnd 100 1.0 8.4262e-02 3.0 0.00e+00 0.0 0.0e+00 0.0e+00 >> 0.0e+00 1 0 0 0 0 52 0 0 0 0 0 0 0 0.00e+00 0 >> 0.00e+00 0 >> >> 24 MPI ranks + 6 GPUs + CUDA-aware SF + No log_view >> MatMult: 100 1.0 1.0397e-01 >> 544510 >> >> >> >> >> >> >>