On Wed, Feb 12, 2020 at 11:38 AM Zhang, Hong <hongzh...@anl.gov> wrote:
> > > On Feb 12, 2020, at 11:09 AM, Matthew Knepley <knep...@gmail.com> wrote: > > On Wed, Feb 12, 2020 at 11:06 AM Zhang, Hong via petsc-dev < > petsc-dev@mcs.anl.gov> wrote: > >> Sorry for the long post. Here are replies I have got from OLCF so far. We >> still don’t know how to solve the problem. >> >> One interesting thing that Tom noticed is PetscInitialize() may have >> called cudaFree(0) 32 times as NVPROF shows, and they all run very fast. >> These calls may be triggered by some other libraries like cublas. But if >> PETSc calls cudaFree() explicitly, it is always very slow. >> > > It sounds really painful, but I would start removing lines from > PetscInitialize() until it runs fast. > > > It may be more painful than it sounds. The problem is not really related > to PetscInitialize(). In the following simple example, we do not call any > PETsc function. But if we link it to the PETSc shared library, cudaFree(0) > would be very slow. CUDA is a blackbox. There is not much we can debug with > this simple example. > I believe you can execute on shared library load. I think you said that PETSc was static, but libcuda was not. Can we 'strace' to see what is happening when libcuda loads? Thanks, Matt > bash-4.2$ cat ex_simple.c > #include <time.h> > #include <cuda_runtime.h> > #include <stdio.h> > > int main(int argc,char **args) > { > clock_t start,s1,s2,s3; > double cputime; > double *init,tmp[100] = {0}; > > start = clock(); > cudaFree(0); > s1 = clock(); > cudaMalloc((void **)&init,100*sizeof(double)); > s2 = clock(); > cudaMemcpy(init,tmp,100*sizeof(double),cudaMemcpyHostToDevice); > s3 = clock(); > printf("free time =%lf malloc time =%lf copy time =%lf\n",((double) (s1 > - start)) / CLOCKS_PER_SEC,((double) (s2 - s1)) / CLOCKS_PER_SEC,((double) > (s3 - s2)) / CLOCKS_PER_SEC); > return 0; > } > > > > Thanks, > > Matt > > >> Hong >> >> >> On Wed Feb 12 09:51:33 2020, tpapathe wrote: >> >> Something else I noticed from the nvprof output (see my previous post) is >> that the runs with PETSc initialized have 33 calls to cudaFree, whereas >> the >> non-PETSc versions only have the 1 call to cudaFree. I'm not sure what is >> happening in the PETSc initialize/finalize, but it appears to be doing a >> lot under the hood. You can also see there are many additional CUDA calls >> that are not shown in the profiler output from the non-PETSc runs (e.g., >> additional cudaMalloc and cudaMemcpy calls, cudaDeviceSychronize, etc.). >> Which other systems have you tested this on? Which CUDA Toolkits and CUDA >> drivers were installed on those systems? Please let me know if there is >> any >> additional information you can share with me about this. >> >> -Tom >> On Wed Feb 12 09:25:23 2020, tpapathe wrote: >> >> Ok. Thanks for the additional info, Hong. I'll ask around to see if any >> local (PETSc or CUDA) experts have experienced this behavior. In the >> meantime, is this impacting your work or something you're just curious >> about? A 5-7 second initialization time is indeed unusual, but is it >> negligible relative to the overall walltime of your jobs, or is it >> somehow affecting your productivity? >> >> -Tom >> On Tue Feb 11 17:04:25 2020, hongzh...@anl.gov wrote: >> >> We know it happens with PETSc. But note that the slow down occurs on >> the first CUDA function call. In the example I sent to you, if we simply >> link it to the PETSc shared library and don’t call any PETSc function, the >> slow down still happens on cudaFree(0). We have never seen this behavior on >> other GPU systems. >> >> On Feb 11, 2020, at 3:31 PM, Thomas Papatheodore via RT <h...@nccs.gov> >> wrote: >> >> Thanks for the update. I have now reproduced the behavior you described >> with >> PETSc + CUDA using your example code: >> >> [tpapathe@batch2: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ jsrun >> -n1 >> -a1 -c1 -g1 -r1 -l cpu-cpu -dpacked -bpacked:1 nvprof >> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_petsc >> >> ==16991== NVPROF is profiling process 16991, command: >> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_petsc >> >> ==16991== Profiling application: >> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_petsc >> >> free time =4.730000 malloc time =0.000000 copy time =0.000000 >> >> ==16991== Profiling result: >> >> Type Time(%) Time Calls Avg Min Max Name >> >> GPU activities: 100.00% 9.3760us 6 1.5620us 1.3440us 1.7920us [CUDA memcpy >> HtoD] >> >> API calls: 99.78% 5.99333s 33 181.62ms 883ns 4.71976s cudaFree >> >> 0.11% 6.3603ms 379 16.781us 233ns 693.40us cuDeviceGetAttribute >> >> 0.07% 4.1453ms 4 1.0363ms 1.0186ms 1.0623ms cuDeviceTotalMem >> >> 0.02% 1.0046ms 4 251.15us 131.45us 449.32us cuDeviceGetName >> >> 0.01% 808.21us 16 50.513us 6.7080us 621.54us cudaMalloc >> >> 0.01% 452.06us 450 1.0040us 830ns 6.4430us cudaFuncSetAttribute >> >> 0.00% 104.89us 6 17.481us 13.419us 21.338us cudaMemcpy >> >> 0.00% 102.26us 15 6.8170us 6.1900us 10.072us cudaDeviceSynchronize >> >> 0.00% 93.635us 80 1.1700us 1.0190us 2.1990us cudaEventCreateWithFlags >> >> 0.00% 92.168us 83 1.1100us 951ns 2.3550us cudaEventDestroy >> >> 0.00% 52.277us 74 706ns 592ns 1.5640us cudaDeviceGetAttribute >> >> 0.00% 34.558us 3 11.519us 9.5410us 15.129us cudaStreamDestroy >> >> 0.00% 27.778us 3 9.2590us 4.9120us 17.632us cudaStreamCreateWithFlags >> >> 0.00% 11.955us 1 11.955us 11.955us 11.955us cudaSetDevice >> >> 0.00% 10.361us 7 1.4800us 809ns 3.6580us cudaGetDevice >> >> 0.00% 5.4310us 3 1.8100us 1.6420us 1.9980us cudaEventCreate >> >> 0.00% 3.8040us 6 634ns 391ns 1.5350us cuDeviceGetCount >> >> 0.00% 3.5350us 1 3.5350us 3.5350us 3.5350us cuDeviceGetPCIBusId >> >> 0.00% 3.2210us 3 1.0730us 949ns 1.1640us cuInit >> >> 0.00% 2.6780us 5 535ns 369ns 1.0210us cuDeviceGet >> >> 0.00% 2.5080us 1 2.5080us 2.5080us 2.5080us cudaSetDeviceFlags >> >> 0.00% 1.6800us 4 420ns 392ns 488ns cuDeviceGetUuid >> >> 0.00% 1.5720us 3 524ns 398ns 590ns cuDriverGetVersion >> >> >> >> If I remove all mention of PETSc from the code, compile manually and run, >> I get >> the expected behavior: >> >> [tpapathe@batch2: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ pgc++ >> -L$OLCF_CUDA_ROOT/lib64 -lcudart ex_simple.c -o ex_simple >> >> >> [tpapathe@batch2: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ jsrun >> -n1 >> -a1 -c1 -g1 -r1 -l cpu-cpu -dpacked -bpacked:1 nvprof >> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple >> >> ==17248== NVPROF is profiling process 17248, command: >> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple >> >> ==17248== Profiling application: >> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple >> >> free time =0.340000 malloc time =0.000000 copy time =0.000000 >> >> ==17248== Profiling result: >> >> Type Time(%) Time Calls Avg Min Max Name >> >> GPU activities: 100.00% 1.7600us 1 1.7600us 1.7600us 1.7600us [CUDA memcpy >> HtoD] >> >> API calls: 98.56% 231.76ms 1 231.76ms 231.76ms 231.76ms cudaFree >> >> 0.67% 1.5764ms 97 16.251us 234ns 652.65us cuDeviceGetAttribute >> >> 0.46% 1.0727ms 1 1.0727ms 1.0727ms 1.0727ms cuDeviceTotalMem >> >> 0.23% 537.38us 1 537.38us 537.38us 537.38us cudaMalloc >> >> 0.07% 172.80us 1 172.80us 172.80us 172.80us cuDeviceGetName >> >> 0.01% 21.648us 1 21.648us 21.648us 21.648us cudaMemcpy >> >> 0.00% 3.3470us 1 3.3470us 3.3470us 3.3470us cuDeviceGetPCIBusId >> >> 0.00% 2.5310us 3 843ns 464ns 1.3700us cuDeviceGetCount >> >> 0.00% 1.7260us 2 863ns 490ns 1.2360us cuDeviceGet >> >> 0.00% 377ns 1 377ns 377ns 377ns cuDeviceGetUuid >> >> >> >> I also get the expected behavior if I add an MPI_Init and MPI_Finalize to >> the >> code instead of PETSc initialization: >> >> [tpapathe@login1: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ mpicc >> -L$OLCF_CUDA_ROOT/lib64 -lcudart ex_simple_mpi.c -o ex_simple_mpi >> >> >> [tpapathe@batch1: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ jsrun >> -n1 >> -a1 -c1 -g1 -r1 -l cpu-cpu -dpacked -bpacked:1 nvprof >> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_mpi >> >> ==35166== NVPROF is profiling process 35166, command: >> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_mpi >> >> ==35166== Profiling application: >> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_mpi >> >> free time =0.340000 malloc time =0.000000 copy time =0.000000 >> >> ==35166== Profiling result: >> >> Type Time(%) Time Calls Avg Min Max Name >> >> GPU activities: 100.00% 1.7600us 1 1.7600us 1.7600us 1.7600us [CUDA memcpy >> HtoD] >> >> API calls: 98.57% 235.61ms 1 235.61ms 235.61ms 235.61ms cudaFree >> >> 0.66% 1.5802ms 97 16.290us 239ns 650.72us cuDeviceGetAttribute >> >> 0.45% 1.0825ms 1 1.0825ms 1.0825ms 1.0825ms cuDeviceTotalMem >> >> 0.23% 542.73us 1 542.73us 542.73us 542.73us cudaMalloc >> >> 0.07% 174.77us 1 174.77us 174.77us 174.77us cuDeviceGetName >> >> 0.01% 26.431us 1 26.431us 26.431us 26.431us cudaMemcpy >> >> 0.00% 4.0330us 1 4.0330us 4.0330us 4.0330us cuDeviceGetPCIBusId >> >> 0.00% 2.8560us 3 952ns 528ns 1.6150us cuDeviceGetCount >> >> 0.00% 1.6190us 2 809ns 576ns 1.0430us cuDeviceGet >> >> 0.00% 341ns 1 341ns 341ns 341ns cuDeviceGetUuid >> >> >> So this appears to be something specific happening within PETSc itself - >> not >> necessarily an OLCF issue. I would suggest asking this question within the >> PETSc community to understand what's happening. Please let me know if you >> have >> any additional questions. >> >> -Tom >> >> On Feb 10, 2020, at 11:14 AM, Smith, Barry F. <bsm...@mcs.anl.gov> wrote: >> >> >> gprof or some similar tool? >> >> >> On Feb 10, 2020, at 11:18 AM, Zhang, Hong via petsc-dev < >> petsc-dev@mcs.anl.gov> wrote: >> >> -cuda_initialize 0 does not make any difference. Actually this issue has >> nothing to do with PetscInitialize(). I tried to call cudaFree(0) before >> PetscInitialize(), and it still took 7.5 seconds. >> >> Hong >> >> On Feb 10, 2020, at 10:44 AM, Zhang, Junchao <jczh...@mcs.anl.gov> wrote: >> >> As I mentioned, have you tried -cuda_initialize 0? Also, >> PetscCUDAInitialize contains >> ierr = PetscCUBLASInitializeHandle();CHKERRQ(ierr); >> ierr = PetscCUSOLVERDnInitializeHandle();CHKERRQ(ierr); >> Have you tried to comment out them and test again? >> --Junchao Zhang >> >> >> On Sat, Feb 8, 2020 at 5:22 PM Zhang, Hong via petsc-dev < >> petsc-dev@mcs.anl.gov> wrote: >> >> >> On Feb 8, 2020, at 5:03 PM, Matthew Knepley <knep...@gmail.com> wrote: >> >> On Sat, Feb 8, 2020 at 4:34 PM Zhang, Hong via petsc-dev < >> petsc-dev@mcs.anl.gov> wrote: >> I did some further investigation. The overhead persists for both the >> PETSc shared library and the static library. In the previous example, it >> does not call any PETSc function, the first CUDA function becomes very slow >> when it is linked to the petsc so. This indicates that the slowdown occurs >> if the symbol (cudafree)is searched through the petsc so, but does not >> occur if the symbol is found directly in the cuda runtime lib. >> >> So the issue has nothing to do with the dynamic linker. The following >> example can be used to easily reproduce the problem (cudaFree(0) always >> takes ~7.5 seconds). >> >> 1) This should go to OLCF admin as Jeff suggests >> >> >> I had sent this to OLCF admin before the discussion was started here. >> Thomas Papatheodore has followed up. I am trying to help him reproduce the >> problem on summit. >> >> >> 2) Just to make sure I understand, a static executable with this code is >> still slow on the cudaFree(), since CUDA is a shared library by default. >> >> >> I prepared the code as a minimal example to reproduce the problem. It >> would be fair to say any code using PETSc (with CUDA enabled, built >> statically or dynamically) on summit suffers a 7.5-second overhead on the >> first CUDA function call (either in the user code or inside PETSc). >> >> Thanks, >> Hong >> >> >> I think we should try: >> >> a) Forcing a full static link, if possible >> >> b) Asking OLCF about link resolution order >> >> It sounds like a similar thing I have seen in the past where link >> resolution order can exponentially increase load time. >> >> Thanks, >> >> Matt >> >> bash-4.2$ cat ex_simple_petsc.c >> #include <time.h> >> #include <cuda_runtime.h> >> #include <stdio.h> >> #include <petscmat.h> >> >> int main(int argc,char **args) >> { >> clock_t start,s1,s2,s3; >> double cputime; >> double *init,tmp[100] = {0}; >> PetscErrorCode ierr=0; >> >> ierr = PetscInitialize(&argc,&args,(char*)0,NULL);if (ierr) return ierr; >> start = clock(); >> cudaFree(0); >> s1 = clock(); >> cudaMalloc((void **)&init,100*sizeof(double)); >> s2 = clock(); >> cudaMemcpy(init,tmp,100*sizeof(double),cudaMemcpyHostToDevice); >> s3 = clock(); >> printf("free time =%lf malloc time =%lf copy time =%lf\n",((double) (s1 >> - start)) / CLOCKS_PER_SEC,((double) (s2 - s1)) / CLOCKS_PER_SEC,((double) >> (s3 - s2)) / CLOCKS_PER_SEC); >> ierr = PetscFinalize(); >> return ierr; >> } >> >> Hong >> >> On Feb 7, 2020, at 3:09 PM, Zhang, Hong <hongzh...@anl.gov> wrote: >> >> Note that the overhead was triggered by the first call to a CUDA >> function. So it seems that the first CUDA function triggered loading petsc >> so (if petsc so is linked), which is slow on the summit file system. >> >> Hong >> >> On Feb 7, 2020, at 2:54 PM, Zhang, Hong via petsc-dev < >> petsc-dev@mcs.anl.gov> wrote: >> >> Linking any other shared library does not slow down the execution. The >> PETSc shared library is the only one causing trouble. >> >> Here are the ldd output for two different versions. For the first >> version, I removed -lpetsc and it ran very fast. The second (slow) version >> was linked to petsc so. >> >> bash-4.2$ ldd ex_simple >> linux-vdso64.so.1 => (0x0000200000050000) >> liblapack.so.0 => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/liblapack.so.0 >> (0x0000200000070000) >> libblas.so.0 => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libblas.so.0 >> (0x00002000009b0000) >> libhdf5hl_fortran.so.100 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5hl_fortran.so.100 >> (0x0000200000e80000) >> libhdf5_fortran.so.100 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5_fortran.so.100 >> (0x0000200000ed0000) >> libhdf5_hl.so.100 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5_hl.so.100 >> (0x0000200000f50000) >> libhdf5.so.103 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5.so.103 >> (0x0000200000fb0000) >> libX11.so.6 => /usr/lib64/libX11.so.6 (0x00002000015e0000) >> libcufft.so.10 => /sw/summit/cuda/10.1.168/lib64/libcufft.so.10 >> (0x0000200001770000) >> libcublas.so.10 => /sw/summit/cuda/10.1.168/lib64/libcublas.so.10 >> (0x0000200009b00000) >> libcudart.so.10.1 => >> /sw/summit/cuda/10.1.168/lib64/libcudart.so.10.1 (0x000020000d950000) >> libcusparse.so.10 => >> /sw/summit/cuda/10.1.168/lib64/libcusparse.so.10 (0x000020000d9f0000) >> libcusolver.so.10 => >> /sw/summit/cuda/10.1.168/lib64/libcusolver.so.10 (0x0000200012f50000) >> libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x000020001dc40000) >> libdl.so.2 => /usr/lib64/libdl.so.2 (0x000020001ddd0000) >> libpthread.so.0 => /usr/lib64/libpthread.so.0 (0x000020001de00000) >> libmpiprofilesupport.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpiprofilesupport.so.3 >> (0x000020001de40000) >> libmpi_ibm_usempi.so => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm_usempi.so >> (0x000020001de70000) >> libmpi_ibm_mpifh.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm_mpifh.so.3 >> (0x000020001dea0000) >> libmpi_ibm.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm.so.3 >> (0x000020001df40000) >> libpgf90rtl.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90rtl.so >> (0x000020001e0b0000) >> libpgf90.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90.so >> (0x000020001e0f0000) >> libpgf90_rpm1.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90_rpm1.so >> (0x000020001e6a0000) >> libpgf902.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf902.so >> (0x000020001e6d0000) >> libpgftnrtl.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgftnrtl.so >> (0x000020001e700000) >> libatomic.so.1 => /usr/lib64/libatomic.so.1 (0x000020001e730000) >> libpgkomp.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgkomp.so >> (0x000020001e760000) >> libomp.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libomp.so >> (0x000020001e790000) >> libomptarget.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libomptarget.so >> (0x000020001e880000) >> libpgmath.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgmath.so >> (0x000020001e8b0000) >> libpgc.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgc.so >> (0x000020001e9d0000) >> librt.so.1 => /usr/lib64/librt.so.1 (0x000020001eb40000) >> libm.so.6 => /usr/lib64/libm.so.6 (0x000020001eb70000) >> libgcc_s.so.1 => /usr/lib64/libgcc_s.so.1 (0x000020001ec60000) >> libc.so.6 => /usr/lib64/libc.so.6 (0x000020001eca0000) >> libz.so.1 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/zlib-1.2.11-2htm7ws4hgrthi5tyjnqxtjxgpfklxsc/lib/libz.so.1 >> (0x000020001ee90000) >> libxcb.so.1 => /usr/lib64/libxcb.so.1 (0x000020001eef0000) >> /lib64/ld64.so.2 (0x0000200000000000) >> libcublasLt.so.10 => >> /sw/summit/cuda/10.1.168/lib64/libcublasLt.so.10 (0x000020001ef40000) >> libutil.so.1 => /usr/lib64/libutil.so.1 (0x0000200020e50000) >> libhwloc_ompi.so.15 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libhwloc_ompi.so.15 >> (0x0000200020e80000) >> libevent-2.1.so.6 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libevent-2.1.so.6 >> (0x0000200020ef0000) >> libevent_pthreads-2.1.so.6 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libevent_pthreads-2.1.so.6 >> (0x0000200020f70000) >> libopen-rte.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libopen-rte.so.3 >> (0x0000200020fa0000) >> libopen-pal.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libopen-pal.so.3 >> (0x00002000210b0000) >> libXau.so.6 => /usr/lib64/libXau.so.6 (0x00002000211a0000) >> >> >> bash-4.2$ ldd ex_simple_slow >> linux-vdso64.so.1 => (0x0000200000050000) >> libpetsc.so.3.012 => >> /autofs/nccs-svm1_home1/hongzh/Projects/petsc/arch-olcf-summit-sell-opt/lib/libpetsc.so.3.012 >> (0x0000200000070000) >> liblapack.so.0 => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/liblapack.so.0 >> (0x0000200002be0000) >> libblas.so.0 => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libblas.so.0 >> (0x0000200003520000) >> libhdf5hl_fortran.so.100 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5hl_fortran.so.100 >> (0x00002000039f0000) >> libhdf5_fortran.so.100 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5_fortran.so.100 >> (0x0000200003a40000) >> libhdf5_hl.so.100 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5_hl.so.100 >> (0x0000200003ac0000) >> libhdf5.so.103 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5.so.103 >> (0x0000200003b20000) >> libX11.so.6 => /usr/lib64/libX11.so.6 (0x0000200004150000) >> libcufft.so.10 => /sw/summit/cuda/10.1.168/lib64/libcufft.so.10 >> (0x00002000042e0000) >> libcublas.so.10 => /sw/summit/cuda/10.1.168/lib64/libcublas.so.10 >> (0x000020000c670000) >> libcudart.so.10.1 => >> /sw/summit/cuda/10.1.168/lib64/libcudart.so.10.1 (0x00002000104c0000) >> libcusparse.so.10 => >> /sw/summit/cuda/10.1.168/lib64/libcusparse.so.10 (0x0000200010560000) >> libcusolver.so.10 => >> /sw/summit/cuda/10.1.168/lib64/libcusolver.so.10 (0x0000200015ac0000) >> libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00002000207b0000) >> libdl.so.2 => /usr/lib64/libdl.so.2 (0x0000200020940000) >> libpthread.so.0 => /usr/lib64/libpthread.so.0 (0x0000200020970000) >> libmpiprofilesupport.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpiprofilesupport.so.3 >> (0x00002000209b0000) >> libmpi_ibm_usempi.so => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm_usempi.so >> (0x00002000209e0000) >> libmpi_ibm_mpifh.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm_mpifh.so.3 >> (0x0000200020a10000) >> libmpi_ibm.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm.so.3 >> (0x0000200020ab0000) >> libpgf90rtl.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90rtl.so >> (0x0000200020c20000) >> libpgf90.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90.so >> (0x0000200020c60000) >> libpgf90_rpm1.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90_rpm1.so >> (0x0000200021210000) >> libpgf902.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf902.so >> (0x0000200021240000) >> libpgftnrtl.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgftnrtl.so >> (0x0000200021270000) >> libatomic.so.1 => /usr/lib64/libatomic.so.1 (0x00002000212a0000) >> libpgkomp.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgkomp.so >> (0x00002000212d0000) >> libomp.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libomp.so >> (0x0000200021300000) >> libomptarget.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libomptarget.so >> (0x00002000213f0000) >> libpgmath.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgmath.so >> (0x0000200021420000) >> libpgc.so => >> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgc.so >> (0x0000200021540000) >> librt.so.1 => /usr/lib64/librt.so.1 (0x00002000216b0000) >> libm.so.6 => /usr/lib64/libm.so.6 (0x00002000216e0000) >> libgcc_s.so.1 => /usr/lib64/libgcc_s.so.1 (0x00002000217d0000) >> libc.so.6 => /usr/lib64/libc.so.6 (0x0000200021810000) >> libz.so.1 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/zlib-1.2.11-2htm7ws4hgrthi5tyjnqxtjxgpfklxsc/lib/libz.so.1 >> (0x0000200021a10000) >> libxcb.so.1 => /usr/lib64/libxcb.so.1 (0x0000200021a60000) >> /lib64/ld64.so.2 (0x0000200000000000) >> libcublasLt.so.10 => >> /sw/summit/cuda/10.1.168/lib64/libcublasLt.so.10 (0x0000200021ab0000) >> libutil.so.1 => /usr/lib64/libutil.so.1 (0x00002000239c0000) >> libhwloc_ompi.so.15 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libhwloc_ompi.so.15 >> (0x00002000239f0000) >> libevent-2.1.so.6 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libevent-2.1.so.6 >> (0x0000200023a60000) >> libevent_pthreads-2.1.so.6 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libevent_pthreads-2.1.so.6 >> (0x0000200023ae0000) >> libopen-rte.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libopen-rte.so.3 >> (0x0000200023b10000) >> libopen-pal.so.3 => >> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libopen-pal.so.3 >> (0x0000200023c20000) >> libXau.so.6 => /usr/lib64/libXau.so.6 (0x0000200023d10000) >> >> >> On Feb 7, 2020, at 2:31 PM, Smith, Barry F. <bsm...@mcs.anl.gov> wrote: >> >> >> ldd -o on the executable of both linkings of your code. >> >> My guess is that without PETSc it is linking the static version of the >> needed libraries and with PETSc the shared. And, in typical fashion, the >> shared libraries are off on some super slow file system so take a long time >> to be loaded and linked in on demand. >> >> Still a performance bug in Summit. >> >> Barry >> >> >> On Feb 7, 2020, at 12:23 PM, Zhang, Hong via petsc-dev < >> petsc-dev@mcs.anl.gov> wrote: >> >> Hi all, >> >> Previously I have noticed that the first call to a CUDA function such as >> cudaMalloc and cudaFree in PETSc takes a long time (7.5 seconds) on summit. >> Then I prepared a simple example as attached to help OCLF reproduce the >> problem. It turned out that the problem was caused by PETSc. The >> 7.5-second overhead can be observed only when the PETSc lib is linked. If I >> do not link PETSc, it runs normally. Does anyone have any idea why this >> happens and how to fix it? >> >> Hong (Mr.) >> >> bash-4.2$ cat ex_simple.c >> #include <time.h> >> #include <cuda_runtime.h> >> #include <stdio.h> >> >> int main(int argc,char **args) >> { >> clock_t start,s1,s2,s3; >> double cputime; >> double *init,tmp[100] = {0}; >> >> start = clock(); >> cudaFree(0); >> s1 = clock(); >> cudaMalloc((void **)&init,100*sizeof(double)); >> s2 = clock(); >> cudaMemcpy(init,tmp,100*sizeof(double),cudaMemcpyHostToDevice); >> s3 = clock(); >> printf("free time =%lf malloc time =%lf copy time =%lf\n",((double) (s1 - >> start)) / CLOCKS_PER_SEC,((double) (s2 - s1)) / CLOCKS_PER_SEC,((double) >> (s3 - s2)) / CLOCKS_PER_SEC); >> >> return 0; >> } >> >> >> >> >> >> >> >> >> -- >> What most experimenters take for granted before they begin their >> experiments is infinitely more interesting than any results to which their >> experiments lead. >> -- Norbert Wiener >> >> https://www.cse.buffalo.edu/~knepley/ >> >> >> >> >> >> > > -- > What most experimenters take for granted before they begin their > experiments is infinitely more interesting than any results to which their > experiments lead. > -- Norbert Wiener > > https://www.cse.buffalo.edu/~knepley/ > <http://www.cse.buffalo.edu/~knepley/> > > > -- What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead. -- Norbert Wiener https://www.cse.buffalo.edu/~knepley/ <http://www.cse.buffalo.edu/~knepley/>