Hi,
I am currently using TSSetEventHandler in my code to detect a random event
where the solution vector gets modified during the event. Ideally, after the
event happens I want the solver to use a much smaller timestep using
TSSetPostEventIntervalStep. However, when I use TSSetPostEventIntervalStep the
solver doesn't use the set value. I managed to reproduce the behavior by
modifying ex40.c as attached.
I think the issue is related to the fact that the fvalue is not technically
"approaching" 0 with a random event, it is more of a step function instead. Do
you have any recommendation on how to implement the behavior I'm looking for?
Let me know if I can provide additional information.
Best,
Sophie
static char help[] = "Serial bouncing ball example to test TS event feature.\n";
/*
The dynamics of the bouncing ball is described by the ODE
u1_t = u2
u2_t = -9.8
There are two events set in this example. The first one checks for the ball hitting the
ground (u1 = 0). Every time the ball hits the ground, its velocity u2 is attenuated by
a factor of 0.9. The second event sets a limit on the number of ball bounces.
*/
#include <petscts.h>
typedef struct {
PetscInt maxbounces;
PetscInt nbounces;
} AppCtx;
PetscErrorCode EventFunction(TS ts,PetscReal t,Vec U,PetscScalar *fvalue,void *ctx)
{
AppCtx *app=(AppCtx*)ctx;
PetscErrorCode ierr;
const PetscScalar *u;
PetscFunctionBegin;
/* Event for ball height */
ierr = VecGetArrayRead(U,&u);CHKERRQ(ierr);
// fvalue[0] = u[0];
fvalue[0] = rand() % 20;
/* Event for number of bounces */
fvalue[1] = app->maxbounces - app->nbounces;
ierr = VecRestoreArrayRead(U,&u);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
PetscErrorCode PostEventFunction(TS ts,PetscInt nevents,PetscInt event_list[],PetscReal t,Vec U,PetscBool forwardsolve,void* ctx)
{
AppCtx *app=(AppCtx*)ctx;
PetscErrorCode ierr;
PetscScalar *u;
PetscFunctionBegin;
if (event_list[0] == 0) {
ierr = PetscPrintf(PETSC_COMM_SELF,"Ball hit the ground at t = %5.2f seconds\n",(double)t);CHKERRQ(ierr);
/* Set new initial conditions with .9 attenuation */
ierr = VecGetArray(U,&u);CHKERRQ(ierr);
u[0] = 0.0;
u[1] = -0.9*u[1];
ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
} else if (event_list[0] == 1) {
ierr = PetscPrintf(PETSC_COMM_SELF,"Ball bounced %D times\n",app->nbounces);CHKERRQ(ierr);
}
app->nbounces++;
ierr = TSSetPostEventIntervalStep(ts, 0.001);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
/*
Defines the ODE passed to the ODE solver in explicit form: U_t = F(U)
*/
static PetscErrorCode RHSFunction(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
{
PetscErrorCode ierr;
PetscScalar *f;
const PetscScalar *u;
PetscFunctionBegin;
/* The next three lines allow us to access the entries of the vectors directly */
ierr = VecGetArrayRead(U,&u);CHKERRQ(ierr);
ierr = VecGetArray(F,&f);CHKERRQ(ierr);
f[0] = u[1];
f[1] = - 9.8;
ierr = VecRestoreArrayRead(U,&u);CHKERRQ(ierr);
ierr = VecRestoreArray(F,&f);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
/*
Defines the Jacobian of the ODE passed to the ODE solver. See TSSetRHSJacobian() for the meaning of the Jacobian.
*/
static PetscErrorCode RHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
{
PetscErrorCode ierr;
PetscInt rowcol[] = {0,1};
PetscScalar J[2][2];
const PetscScalar *u;
PetscFunctionBegin;
ierr = VecGetArrayRead(U,&u);CHKERRQ(ierr);
J[0][0] = 0.0; J[0][1] = 1.0;
J[1][0] = 0.0; J[1][1] = 0.0;
ierr = MatSetValues(B,2,rowcol,2,rowcol,&J[0][0],INSERT_VALUES);CHKERRQ(ierr);
ierr = VecRestoreArrayRead(U,&u);CHKERRQ(ierr);
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
if (A != B) {
ierr = MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
}
PetscFunctionReturn(0);
}
/*
Defines the ODE passed to the ODE solver in implicit form: F(U_t,U) = 0
*/
static PetscErrorCode IFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
{
PetscErrorCode ierr;
PetscScalar *f;
const PetscScalar *u,*udot;
PetscFunctionBegin;
/* The next three lines allow us to access the entries of the vectors directly */
ierr = VecGetArrayRead(U,&u);CHKERRQ(ierr);
ierr = VecGetArrayRead(Udot,&udot);CHKERRQ(ierr);
ierr = VecGetArray(F,&f);CHKERRQ(ierr);
f[0] = udot[0] - u[1];
f[1] = udot[1] + 9.8;
ierr = VecRestoreArrayRead(U,&u);CHKERRQ(ierr);
ierr = VecRestoreArrayRead(Udot,&udot);CHKERRQ(ierr);
ierr = VecRestoreArray(F,&f);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
/*
Defines the Jacobian of the ODE passed to the ODE solver. See TSSetIJacobian() for the meaning of a and the Jacobian.
*/
static PetscErrorCode IJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal a,Mat A,Mat B,void *ctx)
{
PetscErrorCode ierr;
PetscInt rowcol[] = {0,1};
PetscScalar J[2][2];
const PetscScalar *u,*udot;
PetscFunctionBegin;
ierr = VecGetArrayRead(U,&u);CHKERRQ(ierr);
ierr = VecGetArrayRead(Udot,&udot);CHKERRQ(ierr);
J[0][0] = a; J[0][1] = -1.0;
J[1][0] = 0.0; J[1][1] = a;
ierr = MatSetValues(B,2,rowcol,2,rowcol,&J[0][0],INSERT_VALUES);CHKERRQ(ierr);
ierr = VecRestoreArrayRead(U,&u);CHKERRQ(ierr);
ierr = VecRestoreArrayRead(Udot,&udot);CHKERRQ(ierr);
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
if (A != B) {
ierr = MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
}
PetscFunctionReturn(0);
}
int main(int argc,char **argv)
{
TS ts; /* ODE integrator */
Vec U; /* solution will be stored here */
PetscErrorCode ierr;
PetscMPIInt size;
PetscInt n = 2;
PetscScalar *u;
AppCtx app;
PetscInt direction[2];
PetscBool terminate[2];
PetscBool rhs_form=PETSC_FALSE,hist=PETSC_TRUE;
TSAdapt adapt;
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Initialize program
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");
app.nbounces = 0;
app.maxbounces = 10;
ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"ex40 options","");CHKERRQ(ierr);
ierr = PetscOptionsInt("-maxbounces","","",app.maxbounces,&app.maxbounces,NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-test_adapthistory","","",hist,&hist,NULL);CHKERRQ(ierr);
ierr = PetscOptionsEnd();CHKERRQ(ierr);
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Create timestepping solver context
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr);
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Set ODE routines
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
/* Users are advised against the following branching and code duplication.
For problems without a mass matrix like the one at hand, the RHSFunction
(and companion RHSJacobian) interface is enough to support both explicit
and implicit timesteppers. This tutorial example also deals with the
IFunction/IJacobian interface for demonstration and testing purposes. */
ierr = PetscOptionsGetBool(NULL,NULL,"-rhs-form",&rhs_form,NULL);CHKERRQ(ierr);
if (rhs_form) {
ierr = TSSetRHSFunction(ts,NULL,RHSFunction,NULL);CHKERRQ(ierr);
ierr = TSSetRHSJacobian(ts,NULL,NULL,RHSJacobian,NULL);CHKERRQ(ierr);
} else {
Mat A; /* Jacobian matrix */
ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);
ierr = MatSetUp(A);CHKERRQ(ierr);
ierr = TSSetIFunction(ts,NULL,IFunction,NULL);CHKERRQ(ierr);
ierr = TSSetIJacobian(ts,A,A,IJacobian,NULL);CHKERRQ(ierr);
ierr = MatDestroy(&A);CHKERRQ(ierr);
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Set initial conditions
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
ierr = VecCreate(PETSC_COMM_WORLD,&U);CHKERRQ(ierr);
ierr = VecSetSizes(U,n,PETSC_DETERMINE);CHKERRQ(ierr);
ierr = VecSetUp(U);CHKERRQ(ierr);
ierr = VecGetArray(U,&u);CHKERRQ(ierr);
u[0] = 0.0;
u[1] = 20.0;
ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
ierr = TSSetSolution(ts,U);CHKERRQ(ierr);
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Set solver options
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);
ierr = TSSetMaxTime(ts,30.0);CHKERRQ(ierr);
ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
ierr = TSSetTimeStep(ts,0.1);CHKERRQ(ierr);
/* The adapative time step controller could take very large timesteps resulting in
the same event occuring multiple times in the same interval. A maximum step size
limit is enforced here to avoid this issue. */
ierr = TSGetAdapt(ts,&adapt);CHKERRQ(ierr);
ierr = TSAdaptSetStepLimits(adapt,0.0,0.5);CHKERRQ(ierr);
/* Set directions and terminate flags for the two events */
direction[0] = -1; direction[1] = -1;
terminate[0] = PETSC_FALSE; terminate[1] = PETSC_TRUE;
ierr = TSSetEventHandler(ts,2,direction,terminate,EventFunction,PostEventFunction,(void*)&app);CHKERRQ(ierr);
ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Run timestepping solver
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
ierr = TSSolve(ts,U);CHKERRQ(ierr);
if (hist) { /* replay following history */
TSTrajectory tj;
PetscReal tf,t0,dt;
app.nbounces = 0;
ierr = TSGetTime(ts,&tf);CHKERRQ(ierr);
ierr = TSSetMaxTime(ts,tf);CHKERRQ(ierr);
ierr = TSSetStepNumber(ts,0);CHKERRQ(ierr);
ierr = TSRestartStep(ts);CHKERRQ(ierr);
ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
ierr = TSGetAdapt(ts,&adapt);CHKERRQ(ierr);
ierr = TSAdaptSetType(adapt,TSADAPTHISTORY);CHKERRQ(ierr);
ierr = TSGetTrajectory(ts,&tj);CHKERRQ(ierr);
ierr = TSAdaptHistorySetTrajectory(adapt,tj,PETSC_FALSE);CHKERRQ(ierr);
ierr = TSAdaptHistoryGetStep(adapt,0,&t0,&dt);CHKERRQ(ierr);
/* this example fails with single (or smaller) precision */
#if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL__FP16)
ierr = TSAdaptSetType(adapt,TSADAPTBASIC);CHKERRQ(ierr);
ierr = TSAdaptSetStepLimits(adapt,0.0,0.5);CHKERRQ(ierr);
ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
#endif
ierr = TSSetTime(ts,t0);CHKERRQ(ierr);
ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
ierr = TSResetTrajectory(ts);CHKERRQ(ierr);
ierr = VecGetArray(U,&u);CHKERRQ(ierr);
u[0] = 0.0;
u[1] = 20.0;
ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
ierr = TSSolve(ts,U);CHKERRQ(ierr);
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Free work space. All PETSc objects should be destroyed when they are no longer needed.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
ierr = VecDestroy(&U);CHKERRQ(ierr);
ierr = TSDestroy(&ts);CHKERRQ(ierr);
ierr = PetscFinalize();
return ierr;
}
/*TEST
test:
suffix: a
args: -snes_stol 1e-4 -ts_trajectory_dirname ex40_a_dir
output_file: output/ex40.out
test:
suffix: b
args: -ts_type arkimex -snes_stol 1e-4 -ts_trajectory_dirname ex40_b_dir
output_file: output/ex40.out
test:
suffix: c
args: -ts_type theta -ts_adapt_type basic -ts_atol 1e-1 -snes_stol 1e-4 -ts_trajectory_dirname ex40_c_dir
output_file: output/ex40.out
test:
suffix: d
args: -ts_type alpha -ts_adapt_type basic -ts_atol 1e-1 -snes_stol 1e-4 -ts_trajectory_dirname ex40_d_dir
output_file: output/ex40.out
test:
suffix: e
args: -ts_type bdf -ts_adapt_dt_max 0.025 -ts_max_steps 1500 -ts_trajectory_dirname ex40_e_dir
output_file: output/ex40.out
test:
suffix: f
args: -rhs-form -ts_type rk -ts_rk_type 3bs -ts_trajectory_dirname ex40_f_dir
output_file: output/ex40.out
test:
suffix: g
args: -rhs-form -ts_type rk -ts_rk_type 5bs -ts_trajectory_dirname ex40_g_dir
output_file: output/ex40.out
test:
suffix: h
args: -rhs-form -ts_type rk -ts_rk_type 6vr -ts_trajectory_dirname ex40_h_dir
output_file: output/ex40.out
test:
suffix: i
args: -rhs-form -ts_type rk -ts_rk_type 7vr -ts_trajectory_dirname ex40_i_dir
output_file: output/ex40.out
test:
suffix: j
args: -rhs-form -ts_type rk -ts_rk_type 8vr -ts_trajectory_dirname ex40_j_dir
output_file: output/ex40.out
TEST*/