This is an automated email from the git hooks/post-receive script.

sebastic-guest pushed a commit to branch upstream-master
in repository pktools.

commit 46d99cef2eee782b9154eeed76dcd361b917c4f4
Author: Pieter Kempeneers <kempe...@gmail.com>
Date:   Tue Feb 19 10:11:04 2013 +0100

    renamed Histogram to StatFactory
---
 src/algorithms/Filter.h                       |  72 +++----
 src/algorithms/Filter2d.cc                    |  42 ++--
 src/algorithms/Filter2d.h                     |   2 +-
 src/algorithms/Histogram.cc                   |  63 ------
 src/algorithms/Makefile.am                    |   4 +-
 src/algorithms/{Histogram.h => StatFactory.h} | 267 ++++++++++++++++++++------
 src/apps/pkclassify_nn.cc                     |   1 -
 src/apps/pkclassify_svm.cc                    |   1 -
 src/apps/pkdumpogr.cc                         |   1 -
 src/apps/pkextract.cc                         |  20 +-
 src/apps/pkfs_nn.cc                           |   1 -
 src/apps/pklas2img.cc                         |  20 +-
 src/apps/pkmosaic.cc                          |  12 +-
 src/apps/pkopt_svm.cc                         |   1 -
 src/apps/pksensormodel.cc                     |   6 +-
 src/apps/pkstat.cc                            |  38 ++--
 src/apps/pkstatogr.cc                         |  10 +-
 17 files changed, 324 insertions(+), 237 deletions(-)

diff --git a/src/algorithms/Filter.h b/src/algorithms/Filter.h
index ed7ae58..7973171 100644
--- a/src/algorithms/Filter.h
+++ b/src/algorithms/Filter.h
@@ -22,7 +22,7 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 
 #include <vector>
 #include <iostream>
-#include "Histogram.h"
+#include "StatFactory.h"
 #include "imageclasses/ImgReaderGdal.h"
 #include "imageclasses/ImgWriterGdal.h"
 
@@ -89,8 +89,8 @@ template<class T> void Filter::morphology(const vector<T>& 
input, vector<T>& out
   assert(dim);
   output.resize((input.size()-offset+down-1)/down);
   int i=0;
-  Histogram hist;
-  vector<T> histBuffer;
+  statfactory::StatFactory stat;
+  vector<T> statBuffer;
   short binValue=0;
   //start: extend input with mirrored version of itself
   for(i=offset;i<dim/2;++i){
@@ -102,9 +102,9 @@ template<class T> void Filter::morphology(const vector<T>& 
input, vector<T>& out
       }
     }
     if(m_class.size())
-      histBuffer.push_back(binValue);
+      statBuffer.push_back(binValue);
     else
-      histBuffer.push_back(input[i]);
+      statBuffer.push_back(input[i]);
     for(int t=1;t<=dim/2;++t){
       binValue=0;
       for(int iclass=0;iclass<m_class.size();++iclass){
@@ -114,25 +114,25 @@ template<class T> void Filter::morphology(const 
vector<T>& input, vector<T>& out
         }
       }
       if(m_class.size()){
-        histBuffer.push_back(binValue);
-        histBuffer.push_back(binValue);
+        statBuffer.push_back(binValue);
+        statBuffer.push_back(binValue);
       }
       else{
-        histBuffer.push_back(input[i+t]);
-        histBuffer.push_back(input[i+t]);
+        statBuffer.push_back(input[i+t]);
+        statBuffer.push_back(input[i+t]);
       }
     }
-    assert(histBuffer.size()==dim);
+    assert(statBuffer.size()==dim);
     if((i-offset)%down){
-      histBuffer.clear();
+      statBuffer.clear();
       continue;
     }
     switch(method){
     case(DILATE):
-      output[(i-offset+down-1)/down]=hist.max(histBuffer);
+      output[(i-offset+down-1)/down]=stat.max(statBuffer);
       break;
     case(ERODE):
-      output[(i-offset+down-1)/down]=hist.min(histBuffer);
+      output[(i-offset+down-1)/down]=stat.min(statBuffer);
       break;
     default:
       string errorString="method not supported";
@@ -141,13 +141,13 @@ template<class T> void Filter::morphology(const 
vector<T>& input, vector<T>& out
     }
     if(verbose){
       cout << "buffer: ";
-      for(int ibuf=0;ibuf<histBuffer.size();++ibuf)
-        cout << histBuffer[ibuf] << " ";
+      for(int ibuf=0;ibuf<statBuffer.size();++ibuf)
+        cout << statBuffer[ibuf] << " ";
       cout << "->" << output[(i-offset+down-1)/down] << endl;
     }
   }
   //main
-  histBuffer.clear();
+  statBuffer.clear();
   for(i=offset+dim/2;i<input.size()-dim/2;++i){
     binValue=0;
     for(int t=0;t<dim;++t){
@@ -158,21 +158,21 @@ template<class T> void Filter::morphology(const 
vector<T>& input, vector<T>& out
         }
       }
       if(m_class.size())
-        histBuffer.push_back(binValue);
+        statBuffer.push_back(binValue);
       else
-        histBuffer.push_back(input[i-dim/2+t]);
+        statBuffer.push_back(input[i-dim/2+t]);
     }
-    assert(histBuffer.size()==dim);
+    assert(statBuffer.size()==dim);
     if((i-offset)%down){
-      histBuffer.clear();
+      statBuffer.clear();
       continue;
     }
     switch(method){
     case(DILATE):
-      output[(i-offset+down-1)/down]=hist.max(histBuffer);
+      output[(i-offset+down-1)/down]=stat.max(statBuffer);
       break;
     case(ERODE):
-      output[(i-offset+down-1)/down]=hist.min(histBuffer);
+      output[(i-offset+down-1)/down]=stat.min(statBuffer);
       break;
     default:
       string errorString="method not supported";
@@ -181,11 +181,11 @@ template<class T> void Filter::morphology(const 
vector<T>& input, vector<T>& out
     }
     if(verbose){
       cout << "buffer: ";
-      for(int ibuf=0;ibuf<histBuffer.size();++ibuf)
-        cout << histBuffer[ibuf] << " ";
+      for(int ibuf=0;ibuf<statBuffer.size();++ibuf)
+        cout << statBuffer[ibuf] << " ";
       cout << "->" << output[(i-offset+down-1)/down] << endl;
     }
-    histBuffer.clear();
+    statBuffer.clear();
   }
   //end: extend input with mirrored version of itself
   for(i=input.size()-dim/2;i<input.size();++i){
@@ -197,9 +197,9 @@ template<class T> void Filter::morphology(const vector<T>& 
input, vector<T>& out
         }
       }
       if(m_class.size())
-        histBuffer.push_back(binValue);
+        statBuffer.push_back(binValue);
       else
-        histBuffer.push_back(input[i]);
+        statBuffer.push_back(input[i]);
       for(int t=1;t<=dim/2;++t){
         binValue=0;
         for(int iclass=0;iclass<m_class.size();++iclass){
@@ -209,24 +209,24 @@ template<class T> void Filter::morphology(const 
vector<T>& input, vector<T>& out
           }
         }
         if(m_class.size()){
-          histBuffer.push_back(binValue);
-          histBuffer.push_back(binValue);
+          statBuffer.push_back(binValue);
+          statBuffer.push_back(binValue);
         }
         else{
-          histBuffer.push_back(input[i-t]);
-          histBuffer.push_back(input[i-t]);
+          statBuffer.push_back(input[i-t]);
+          statBuffer.push_back(input[i-t]);
         }
       }
     if((i-offset)%down){
-      histBuffer.clear();
+      statBuffer.clear();
       continue;
     }
     switch(method){
     case(DILATE):
-      output[(i-offset+down-1)/down]=hist.max(histBuffer);
+      output[(i-offset+down-1)/down]=stat.max(statBuffer);
       break;
     case(ERODE):
-      output[(i-offset+down-1)/down]=hist.min(histBuffer);
+      output[(i-offset+down-1)/down]=stat.min(statBuffer);
       break;
     default:
       string errorString="method not supported";
@@ -235,8 +235,8 @@ template<class T> void Filter::morphology(const vector<T>& 
input, vector<T>& out
     }
     if(verbose){
       cout << "buffer: ";
-      for(int ibuf=0;ibuf<histBuffer.size();++ibuf)
-        cout << histBuffer[ibuf] << " ";
+      for(int ibuf=0;ibuf<statBuffer.size();++ibuf)
+        cout << statBuffer[ibuf] << " ";
       cout << "->" << output[(i-offset+down-1)/down] << endl;
     }
   }
diff --git a/src/algorithms/Filter2d.cc b/src/algorithms/Filter2d.cc
index e46af52..f20ed11 100644
--- a/src/algorithms/Filter2d.cc
+++ b/src/algorithms/Filter2d.cc
@@ -22,7 +22,7 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 #include <iostream>
 #include <cmath>
 #include "Filter2d.h"
-#include "Histogram.h"
+#include "StatFactory.h"
 // #include "imageclasses/ImgUtils.h"
 
 Filter2d::Filter2d::Filter2d(void)
@@ -410,7 +410,7 @@ void Filter2d::Filter2d::doit(const ImgReaderGdal& input, 
ImgWriterGdal& output,
 {
   assert(dimX);
   assert(dimY);
-  Histogram hist;
+  statfactory::StatFactory stat;
   const char* pszMessage;
   void* pProgressArg=NULL;
   GDALProgressFunc pfnProgress=GDALTermProgress;
@@ -506,41 +506,41 @@ void Filter2d::Filter2d::doit(const ImgReaderGdal& input, 
ImgWriterGdal& output,
           if(windowBuffer.empty())
             outBuffer[x/down]=m_noValue;
           else
-            outBuffer[x/down]=hist.median(windowBuffer);
+            outBuffer[x/down]=stat.median(windowBuffer);
           break;
         case(VAR):{
           if(windowBuffer.empty())
             outBuffer[x/down]=m_noValue;
           else
-            outBuffer[x/down]=hist.var(windowBuffer);
+            outBuffer[x/down]=stat.var(windowBuffer);
           break;
         }
         case(STDEV):{
           if(windowBuffer.empty())
             outBuffer[x/down]=m_noValue;
           else
-            outBuffer[x/down]=sqrt(hist.var(windowBuffer));
+            outBuffer[x/down]=sqrt(stat.var(windowBuffer));
           break;
         }
         case(MEAN):{
           if(windowBuffer.empty())
             outBuffer[x/down]=m_noValue;
           else
-            outBuffer[x/down]=hist.mean(windowBuffer);
+            outBuffer[x/down]=stat.mean(windowBuffer);
           break;
         }
         case(MIN):{
           if(windowBuffer.empty())
             outBuffer[x/down]=m_noValue;
           else
-           outBuffer[x/down]=hist.min(windowBuffer);
+           outBuffer[x/down]=stat.min(windowBuffer);
           break;
         }
         case(ISMIN):{
            if(windowBuffer.empty())
             outBuffer[x/down]=m_noValue;
           else
-            
outBuffer[x/down]=(hist.min(windowBuffer)==windowBuffer[dimX*dimY/2])? 1:0;
+            
outBuffer[x/down]=(stat.min(windowBuffer)==windowBuffer[dimX*dimY/2])? 1:0;
           break;
         }
         case(MINMAX):{
@@ -549,7 +549,7 @@ void Filter2d::Filter2d::doit(const ImgReaderGdal& input, 
ImgWriterGdal& output,
           if(windowBuffer.empty())
             outBuffer[x/down]=m_noValue;
           else{
-            
hist.minmax(windowBuffer,windowBuffer.begin(),windowBuffer.end(),min,max);
+            
stat.minmax(windowBuffer,windowBuffer.begin(),windowBuffer.end(),min,max);
             if(min!=max)
               outBuffer[x/down]=0;
             else
@@ -561,14 +561,14 @@ void Filter2d::Filter2d::doit(const ImgReaderGdal& input, 
ImgWriterGdal& output,
           if(windowBuffer.empty())
             outBuffer[x/down]=m_noValue;
           else
-            outBuffer[x/down]=hist.max(windowBuffer);
+            outBuffer[x/down]=stat.max(windowBuffer);
           break;
         }
         case(ISMAX):{
           if(windowBuffer.empty())
             outBuffer[x/down]=m_noValue;
           else
-            
outBuffer[x/down]=(hist.max(windowBuffer)==windowBuffer[dimX*dimY/2])? 1:0;
+            
outBuffer[x/down]=(stat.max(windowBuffer)==windowBuffer[dimX*dimY/2])? 1:0;
           break;
         }
         case(ORDER):{
@@ -577,15 +577,15 @@ void Filter2d::Filter2d::doit(const ImgReaderGdal& input, 
ImgWriterGdal& output,
           else{
             double lbound=0;
             double ubound=dimX*dimY;
-            double theMin=hist.min(windowBuffer);
-            double theMax=hist.max(windowBuffer);
+            double theMin=stat.min(windowBuffer);
+            double theMax=stat.max(windowBuffer);
             double scale=(ubound-lbound)/(theMax-theMin);
             
outBuffer[x/down]=static_cast<short>(scale*(windowBuffer[dimX*dimY/2]-theMin)+lbound);
           }
           break;
         }
         case(SUM):{
-          outBuffer[x/down]=hist.sum(windowBuffer);
+          outBuffer[x/down]=stat.sum(windowBuffer);
           break;
         }
         case(HOMOG):
@@ -803,7 +803,7 @@ void Filter2d::Filter2d::morphology(const ImgReaderGdal& 
input, ImgWriterGdal& o
 {
   assert(dimX);
   assert(dimY);
-  Histogram hist;
+  statfactory::StatFactory stat;
   for(int iband=0;iband<input.nrOfBand();++iband){
     Vector2d<double> inBuffer(dimY,input.nrOfCol());
     vector<double> outBuffer(input.nrOfCol());
@@ -843,7 +843,7 @@ void Filter2d::Filter2d::morphology(const ImgReaderGdal& 
input, ImgWriterGdal& o
       for(int x=0;x<input.nrOfCol();++x){
         double currentValue=inBuffer[dimY/2][x];
        outBuffer[x]=currentValue;
-       vector<double> histBuffer;
+       vector<double> statBuffer;
        bool currentMasked=false;
         double rse=0;
        for(int imask=0;imask<m_mask.size();++imask){
@@ -925,19 +925,19 @@ void Filter2d::Filter2d::morphology(const ImgReaderGdal& 
input, ImgWriterGdal& o
                  }
                }
                if(m_class.size())
-                 histBuffer.push_back(binValue);
+                 statBuffer.push_back(binValue);
                else
-                 histBuffer.push_back(inBuffer[indexJ][indexI]);
+                 statBuffer.push_back(inBuffer[indexJ][indexI]);
              }
            }
           }
-         if(histBuffer.size()){
+         if(statBuffer.size()){
             switch(method){
             case(DILATE):
-              outBuffer[x]=hist.max(histBuffer);
+              outBuffer[x]=stat.max(statBuffer);
               break;
             case(ERODE):
-              outBuffer[x]=hist.min(histBuffer);
+              outBuffer[x]=stat.min(statBuffer);
               break;
             default:
               ostringstream ess;
diff --git a/src/algorithms/Filter2d.h b/src/algorithms/Filter2d.h
index 954f1fc..785d1cf 100644
--- a/src/algorithms/Filter2d.h
+++ b/src/algorithms/Filter2d.h
@@ -372,7 +372,7 @@ template<class T1, class T2> void Filter2d::doit(const 
Vector2d<T1>& inputVector
         break;
       }
       case(MIXED):{
-        enum Type { BF=11, CF=12, MF=13, NF=20, W=30 };
+        enum MixType { BF=11, CF=12, MF=13, NF=20, W=30 };
         double nBF=occurrence[BF];
         double nCF=occurrence[CF];
         double nMF=occurrence[MF];
diff --git a/src/algorithms/Histogram.cc b/src/algorithms/Histogram.cc
deleted file mode 100644
index cd51498..0000000
--- a/src/algorithms/Histogram.cc
+++ /dev/null
@@ -1,63 +0,0 @@
-/**********************************************************************
-Histogram.cc: class for statistical operations on vectors
-Copyright (C) 2008-2012 Pieter Kempeneers
-
-This file is part of pktools
-
-pktools is free software: you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation, either version 3 of the License, or
-(at your option) any later version.
-
-pktools is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with pktools.  If not, see <http://www.gnu.org/licenses/>.
-***********************************************************************/
-#include "Histogram.h"
-
-
-Histogram::Histogram(){
-}
-
-void Histogram::signature(double m1, double m2, double& k, double& alpha, 
double& beta, double e)
-{
-  double y=m1*m1/m2;
-  beta=F_1(y,0.1,10.0,e);
-  double fb=F(beta);
-  double g=exp(lgamma(1.0/beta));
-  alpha=m1*g/exp(lgamma(2.0/beta));
-  k=beta/(2*alpha*g);
-//   cout << "y, alpha, beta: " << y << ", " << alpha << ", " << beta << endl;
-}
-
-double Histogram::F(double x)
-{
-  double g2=exp(lgamma(2.0/x));
-  return(g2*g2/exp(lgamma(3.0/x))/exp(lgamma(1.0/x)));
-}
-
-//x1 is under estimate, x2 is over estimate, e is error
-double Histogram::F_1(double y, double x1, double x2, double e)
-{
-  double f1=F(x1);
-  double f2=F(x2);
-  assert(f1!=f2);
-  double x=x1+(x2-x1)*(y-f1)/(f2-f1);
-  double f=F(x);
-  while(f-y>=e||y-f>=e){
-    if(f<y)
-      x1=x;
-    else 
-      x2=x;
-    if(x1==x2)
-      return x1;
-    assert(f1!=f2);
-    x=x1+(x2-x1)*(y-f1)/(f2-f1);
-    f=F(x);
-  }
-  return x;
-}
diff --git a/src/algorithms/Makefile.am b/src/algorithms/Makefile.am
index b00098e..3ef425a 100644
--- a/src/algorithms/Makefile.am
+++ b/src/algorithms/Makefile.am
@@ -12,7 +12,7 @@ noinst_LIBRARIES = libalgorithms.a
 libalgorithms_adir = $(includedir)/algorithms
 
 # the list of header files that belong to the library (to be installed later)
-libalgorithms_a_HEADERS = Egcs.h Filter2d.h Filter.h Histogram.h 
ConfusionMatrix.h svm.h FeatureSelector.h
+libalgorithms_a_HEADERS = Egcs.h Filter2d.h Filter.h StatFactory.h 
ConfusionMatrix.h svm.h FeatureSelector.h
 
 if USE_FANN
 libalgorithms_a_HEADERS += myfann_cpp.h
@@ -23,5 +23,5 @@ libalgorithms_a_HEADERS += SensorModel.h OptFactory.h
 endif
 
 # the sources to add to the library and to add to the source distribution
-libalgorithms_a_SOURCES = $(libalgorithms_a_HEADERS) Egcs.cc Filter2d.cc 
Filter.cc Histogram.cc ConfusionMatrix.cc svm.cpp
+libalgorithms_a_SOURCES = $(libalgorithms_a_HEADERS) Egcs.cc Filter2d.cc 
Filter.cc ConfusionMatrix.cc svm.cpp
 ###############################################################################
diff --git a/src/algorithms/Histogram.h b/src/algorithms/StatFactory.h
similarity index 59%
rename from src/algorithms/Histogram.h
rename to src/algorithms/StatFactory.h
index 8d41dff..98e44f3 100644
--- a/src/algorithms/Histogram.h
+++ b/src/algorithms/StatFactory.h
@@ -1,6 +1,6 @@
 /**********************************************************************
-Histogram.h: class for statistical operations on vectors
-Copyright (C) 2008-2012 Pieter Kempeneers
+StatFactory.h: class for statistical operations on vectors
+Copyright (C) 2008-2013 Pieter Kempeneers
 
 This file is part of pktools
 
@@ -17,8 +17,8 @@ GNU General Public License for more details.
 You should have received a copy of the GNU General Public License
 along with pktools.  If not, see <http://www.gnu.org/licenses/>.
 ***********************************************************************/
-#ifndef _HISTOGRAM_H_
-#define _HISTOGRAM_H_
+#ifndef _STATFACTORY_H_
+#define _STATFACTORY_H_
 
 #include <iostream>
 #include <vector>
@@ -29,22 +29,21 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 #include <fstream>
 #include <algorithm>
 #include <gsl/gsl_fit.h>
-//#include <gsl/gsl_errno.h>
-
-/* #include "newmat/newmat.h" */
-/* #include "newmat/newmatap.h" */
-/* #include "newmat/newmatio.h" */
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_spline.h>
 
 using namespace std;
 // using namespace NEWMAT;
 
-namespace histogram
+namespace statfactory
 {
+
+  enum INTERPOLATION_TYPE 
{UNDEFINED=0,POLYNOMIAL=1,CSPLINE=2,PERIODIC=3,AKIMA=4,AKIMA_PERIODIC=5,LINEAR=6};
       
-class Histogram{
+class StatFactory{
 public:
-  Histogram(void);
-  virtual ~Histogram(void){};
+  StatFactory(void){};
+  virtual ~StatFactory(void){};
   template<class T> T max(const vector<T>& v) const;
   template<class T> T min(const vector<T>& v) const;
 //   template<class T> typename vector<T>::const_iterator max(const vector<T>& 
v, typename vector<T>::const_iterator begin, typename vector<T>::const_iterator 
end) const;
@@ -76,22 +75,16 @@ public:
   template<class T> double correlation(const vector<T>& x, const vector<T>& y, 
int delay=0) const;
   template<class T> double cross_correlation(const vector<T>& x, const 
vector<T>& y, int maxdelay, vector<T>& z) const;
   template<class T> double linear_regression(const vector<T>& x, const 
vector<T>& y, double &c0, double &c1) const;
+  template<class T> void interpolateUp(const vector< vector<T> >& input, 
vector< vector<T> >& output, double start, double end, double step, int type=0);
+  template<class T> void interpolateUp(const vector<T>& input, vector<T>& 
output, int nbin);
+  template<class T> void interpolateUp(double* input, int dim, vector<T>& 
output, int nbin);
+  template<class T> void interpolateDown(const vector<T>& input, vector<T>& 
output, int nbin);
+  template<class T> void interpolateDown(double* input, int dim, vector<T>& 
output, int nbin);
+
 private:
-  double F(double x);
-  double F_1(double y, double x1, double x2, double e);
 };
 
-// template<class T> typename vector<T>::const_iterator Histogram::max(const 
vector<T>& v, typename vector<T>::const_iterator begin, typename 
vector<T>::const_iterator end) const
-// {
-//   typename vector<T>::const_iterator tmpIt=begin;
-//   for (typename vector<T>::const_iterator it = begin; it!=end; ++it){
-//     if(*tmpIt<*it)
-//       tmpIt=it;
-//   }
-//   return tmpIt;
-// }
-
-template<class T> typename vector<T>::iterator Histogram::max(const vector<T>& 
v, typename vector<T>::iterator begin, typename vector<T>::iterator end) const
+template<class T> typename vector<T>::iterator StatFactory::max(const 
vector<T>& v, typename vector<T>::iterator begin, typename vector<T>::iterator 
end) const
 {
   typename vector<T>::iterator tmpIt=begin;
   for (typename vector<T>::iterator it = begin; it!=end; ++it){
@@ -101,7 +94,7 @@ template<class T> typename vector<T>::iterator 
Histogram::max(const vector<T>& v
   return tmpIt;
 }
 
-template<class T> T Histogram::max(const vector<T>& v) const
+template<class T> T StatFactory::max(const vector<T>& v) const
 {
   T maxValue=*(v.begin());
   for (typename vector<T>::const_iterator it = v.begin(); it!=v.end(); ++it){
@@ -111,7 +104,7 @@ template<class T> T Histogram::max(const vector<T>& v) const
   return maxValue;
 }
 
-template<class T> T Histogram::min(const vector<T>& v) const
+template<class T> T StatFactory::min(const vector<T>& v) const
 {
   T minValue=*(v.begin());
   for (typename vector<T>::const_iterator it = v.begin(); it!=v.end(); ++it){
@@ -121,7 +114,7 @@ template<class T> T Histogram::min(const vector<T>& v) const
   return minValue;
 }
 
-template<class T> typename vector<T>::const_iterator Histogram::absmax(const 
vector<T>& v, typename vector<T>::const_iterator begin, typename 
vector<T>::const_iterator end) const
+template<class T> typename vector<T>::const_iterator StatFactory::absmax(const 
vector<T>& v, typename vector<T>::const_iterator begin, typename 
vector<T>::const_iterator end) const
 {
   typename vector<T>::const_iterator tmpIt=begin;
   for (typename vector<T>::const_iterator it = begin; it!=end; ++it){
@@ -131,7 +124,7 @@ template<class T> typename vector<T>::const_iterator 
Histogram::absmax(const vec
   return tmpIt;
 }
 
-template<class T> typename vector<T>::const_iterator Histogram::min(const 
vector<T>& v, typename vector<T>::const_iterator begin, typename 
vector<T>::const_iterator end) const
+template<class T> typename vector<T>::const_iterator StatFactory::min(const 
vector<T>& v, typename vector<T>::const_iterator begin, typename 
vector<T>::const_iterator end) const
 {
   typename vector<T>::const_iterator tmpIt=begin;
   for (typename vector<T>::const_iterator it = begin; it!=end; ++it){
@@ -141,7 +134,7 @@ template<class T> typename vector<T>::const_iterator 
Histogram::min(const vector
   return tmpIt;
 }
 
-template<class T> typename vector<T>::const_iterator Histogram::absmin(const 
vector<T>& v, typename vector<T>::const_iterator begin, typename 
vector<T>::const_iterator end) const
+template<class T> typename vector<T>::const_iterator StatFactory::absmin(const 
vector<T>& v, typename vector<T>::const_iterator begin, typename 
vector<T>::const_iterator end) const
 {
   typename vector<T>::const_iterator tmpIt=begin;
   for (typename vector<T>::const_iterator it = begin; it!=end; ++it){
@@ -150,7 +143,7 @@ template<class T> typename vector<T>::const_iterator 
Histogram::absmin(const vec
   }
 }
 
-template<class T> void Histogram::minmax(const vector<T>& v, typename 
vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T& 
theMin, T& theMax) const
+template<class T> void StatFactory::minmax(const vector<T>& v, typename 
vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T& 
theMin, T& theMax) const
 {
   theMin=*begin;
   theMax=*begin;
@@ -162,7 +155,7 @@ template<class T> void Histogram::minmax(const vector<T>& 
v, typename vector<T>:
   }
 }
 
-template<class T> T Histogram::sum(const vector<T>& v) const
+template<class T> T StatFactory::sum(const vector<T>& v) const
 {
   typename vector<T>::const_iterator it;
   T tmpSum=0;
@@ -171,13 +164,13 @@ template<class T> T Histogram::sum(const vector<T>& v) 
const
   return tmpSum;
 }
 
-template<class T> double Histogram::mean(const vector<T>& v) const
+template<class T> double StatFactory::mean(const vector<T>& v) const
 {
   assert(v.size());
   return static_cast<double>(sum(v))/v.size();
 }
 
-template<class T> T Histogram::median(const vector<T>& v) const
+template<class T> T StatFactory::median(const vector<T>& v) const
 {
   vector<T> tmpV=v;
   sort(tmpV.begin(),tmpV.end());
@@ -187,7 +180,7 @@ template<class T> T Histogram::median(const vector<T>& v) 
const
     return 0.5*(tmpV[tmpV.size()/2-1]+tmpV[tmpV.size()/2]);
 }
 
-template<class T> double Histogram::var(const vector<T>& v) const
+template<class T> double StatFactory::var(const vector<T>& v) const
 {
   typename vector<T>::const_iterator it;
   double v1=0;
@@ -206,7 +199,7 @@ template<class T> double Histogram::var(const vector<T>& v) 
const
   return v1;
 }
 
-template<class T> double Histogram::moment(const vector<T>& v, int n) const
+template<class T> double StatFactory::moment(const vector<T>& v, int n) const
 {
   assert(v.size());
   typename vector<T>::const_iterator it;
@@ -219,7 +212,7 @@ template<class T> double Histogram::moment(const vector<T>& 
v, int n) const
 }
 
   //central moment
-template<class T> double Histogram::cmoment(const vector<T>& v, int n) const
+template<class T> double StatFactory::cmoment(const vector<T>& v, int n) const
 {
   assert(v.size());
   typename vector<T>::const_iterator it;
@@ -231,19 +224,19 @@ template<class T> double Histogram::cmoment(const 
vector<T>& v, int n) const
   return m/v.size();
 }
 
-template<class T> double Histogram::skewness(const vector<T>& v) const
+template<class T> double StatFactory::skewness(const vector<T>& v) const
 {
   return cmoment(v,3)/pow(var(v),1.5);
 }
 
-template<class T> double Histogram::kurtosis(const vector<T>& v) const
+template<class T> double StatFactory::kurtosis(const vector<T>& v) const
 {
   double m2=cmoment(v,2);
   double m4=cmoment(v,4);
   return m4/m2/m2-3.0;
 }
 
-template<class T> void Histogram::meanVar(const vector<T>& v, double& m1, 
double& v1) const
+template<class T> void StatFactory::meanVar(const vector<T>& v, double& m1, 
double& v1) const
 {
   typename vector<T>::const_iterator it;
   v1=0;
@@ -256,7 +249,7 @@ template<class T> void Histogram::meanVar(const vector<T>& 
v, double& m1, double
   assert(v1>=0);
 }
 
-template<class T1, class T2> void Histogram::scale2byte(const vector<T1>& 
input, vector<T2>& output, unsigned char lbound,  unsigned char ubound) const
+template<class T1, class T2> void StatFactory::scale2byte(const vector<T1>& 
input, vector<T2>& output, unsigned char lbound,  unsigned char ubound) const
 {
   output.resize(input.size());
   T1 minimum=min(input);
@@ -267,7 +260,7 @@ template<class T1, class T2> void 
Histogram::scale2byte(const vector<T1>& input,
     output[i]=scale*(input[i]-(minimum))+lbound;
 }
 
-template<class T> void  Histogram::distribution (const vector<T>& input, 
typename vector<T>::const_iterator begin, typename vector<T>::const_iterator 
end, vector<int>& output, int nbin, T &minimum, T &maximum, const string 
&filename)
+template<class T> void  StatFactory::distribution (const vector<T>& input, 
typename vector<T>::const_iterator begin, typename vector<T>::const_iterator 
end, vector<int>& output, int nbin, T &minimum, T &maximum, const string 
&filename)
 {
   if(maximum<=minimum)
     minmax(input,begin,end,minimum,maximum);
@@ -307,7 +300,7 @@ template<class T> void  Histogram::distribution (const 
vector<T>& input, typenam
   }
 }
 
-template<class T> void  Histogram::percentiles (const vector<T>& input, 
typename vector<T>::const_iterator begin, typename vector<T>::const_iterator 
end, vector<T>& output, int nbin, T &minimum, T &maximum, const string 
&filename)
+template<class T> void  StatFactory::percentiles (const vector<T>& input, 
typename vector<T>::const_iterator begin, typename vector<T>::const_iterator 
end, vector<T>& output, int nbin, T &minimum, T &maximum, const string 
&filename)
 {
   if(maximum<=minimum)
     minmax(input,begin,end,minimum,maximum);
@@ -354,7 +347,7 @@ template<class T> void  Histogram::percentiles (const 
vector<T>& input, typename
   }
 }
 
-// template<class T> void  Histogram::cumulative (const vector<T>& input, 
typename vector<T>::const_iterator begin, typename vector<T>::const_iterator 
end, vector<int>& output, int nbin, T &minimum, T &maximum)
+// template<class T> void  StatFactory::cumulative (const vector<T>& input, 
typename vector<T>::const_iterator begin, typename vector<T>::const_iterator 
end, vector<int>& output, int nbin, T &minimum, T &maximum)
 // {
 //   assert(nbin>1);
 //   assert(input.size());
@@ -375,14 +368,14 @@ template<class T> void  Histogram::percentiles (const 
vector<T>& input, typename
 //   }
 // }
 
-template<class T> void Histogram::signature(const vector<T>& input, double&k, 
double& alpha, double& beta, double e)
+template<class T> void StatFactory::signature(const vector<T>& input, 
double&k, double& alpha, double& beta, double e)
 {
   double m1=moment(input,1);
   double m2=moment(input,2);
   signature(m1,m2,k,alpha,beta,e);
 }
 
-template<class T> void Histogram::normalize(const vector<T>& input, 
vector<double>& output){
+template<class T> void StatFactory::normalize(const vector<T>& input, 
vector<double>& output){
   double total=sum(input);
   if(total){
     output.resize(input.size());
@@ -393,7 +386,7 @@ template<class T> void Histogram::normalize(const 
vector<T>& input, vector<doubl
     output=input;
 }
 
-template<class T> void Histogram::normalize_pct(vector<T>& input){
+template<class T> void StatFactory::normalize_pct(vector<T>& input){
   double total=sum(input);
   if(total){
     typename vector<T>::iterator it;
@@ -402,7 +395,7 @@ template<class T> void Histogram::normalize_pct(vector<T>& 
input){
   }
 }
  
-template<class T> double Histogram::rmse(const vector<T>& x, const vector<T>& 
y) const{
+template<class T> double StatFactory::rmse(const vector<T>& x, const 
vector<T>& y) const{
   assert(x.size()==y.size());
   assert(x.size());
   double mse=0;
@@ -413,7 +406,7 @@ template<class T> double Histogram::rmse(const vector<T>& 
x, const vector<T>& y)
   return sqrt(mse);
 }
 
-template<class T> double Histogram::correlation(const vector<T>& x, const 
vector<T>& y, int delay) const{
+template<class T> double StatFactory::correlation(const vector<T>& x, const 
vector<T>& y, int delay) const{
   double meanX=0;
   double meanY=0;
   double varX=0;
@@ -442,7 +435,7 @@ template<class T> double Histogram::correlation(const 
vector<T>& x, const vector
     return 0;
 }
 
-template<class T> double Histogram::cross_correlation(const vector<T>& x, 
const vector<T>& y, int maxdelay, vector<T>& z) const{
+template<class T> double StatFactory::cross_correlation(const vector<T>& x, 
const vector<T>& y, int maxdelay, vector<T>& z) const{
   z.clear();
   double sumCorrelation=0;
   for (int delay=-maxdelay;delay<maxdelay;delay++) {
@@ -452,7 +445,7 @@ template<class T> double Histogram::cross_correlation(const 
vector<T>& x, const
   return sumCorrelation;
 }
 
-  template<class T> double Histogram::linear_regression(const vector<T>& x, 
const vector<T>& y, double &c0, double &c1) const{
+  template<class T> double StatFactory::linear_regression(const vector<T>& x, 
const vector<T>& y, double &c0, double &c1) const{
   assert(x.size()==y.size());
   assert(x.size());
   double cov00;
@@ -463,13 +456,175 @@ template<class T> double 
Histogram::cross_correlation(const vector<T>& x, const
   return (1-sumsq/var(y)/(y.size()-1));
 }
 
+//alternatively: use GNU scientific library:
+// gsl_stats_correlation (const double data1[], const size_t stride1, const 
double data2[], const size_t stride2, const size_t n)
+
+template<class T> void StatFactory::interpolateUp(const vector< vector<T> >& 
input, vector< vector<T> >& output, double start, double end, double step, int 
type)
+{
+  int nsample=input.size()-1;//first sample contains wavelength
+  int nband=input[0].size();    
+  output.clear();
+  output.resize(nsample+1);//first sample contains wavelength
+  start=(start)?start:floor(input[0][0]);
+  end=(end)?end:ceil(input[0].back());
+  for(double xi=start;xi<=end;xi+=step)
+    output[0].push_back(xi);
+  for(int isample=1;isample<nsample+1;++isample){
+    gsl_interp_accel *acc=gsl_interp_accel_alloc();
+    gsl_spline *spline;
+    switch(type){
+    case(POLYNOMIAL):
+      spline=gsl_spline_alloc(gsl_interp_polynomial,nband);
+      break;
+    case(CSPLINE):
+        spline=gsl_spline_alloc(gsl_interp_cspline,nband);
+        break;
+    case(PERIODIC):
+        spline=gsl_spline_alloc(gsl_interp_cspline_periodic,nband);
+        break;
+    case(AKIMA):
+        spline=gsl_spline_alloc(gsl_interp_akima,nband);
+        break;
+    case(PERIODIC):
+        spline=gsl_spline_alloc(gsl_interp_akima_periodic,nband);
+        break;
+    case(LINEAR):
+    default:
+        spline=gsl_spline_alloc(gsl_interp_linear,nband);
+        break;
+    case(UNDEFINED):
+    default:{
+      string errorString="Error: interpolation type not defined: ";
+      errorString+=type;
+      throw(errorString);
+        break;
+    }
+    }
+    gsl_spline_init(spline,&(input[0][0]),&(input[isample][0]),nband);      
+    for(double xi=start;xi<=end;xi+=step){
+      if(!type&&xi>input[0].back())
+        output[isample].push_back(output[isample].back());
+      else
+        output[isample].push_back(gsl_spline_eval(spline,xi,acc));
+    }
+    gsl_spline_free(spline);
+    gsl_interp_accel_free(acc);
+
+  }    
+}    
+
+template<class T> void StatFactory::interpolateUp(const vector<T>& input, 
vector<T>& output, int nbin)
+{
+  assert(input.size());
+  assert(nbin);
+  output.clear();
+  int dim=input.size();
+  for(int i=0;i<dim;++i){
+    double deltaX=0;
+    double left=input[i];
+    if(i<dim-1){
+      double right=(i<dim-1)? input[i+1]:input[i];
+      deltaX=(right-left)/static_cast<double>(nbin);
+      for(int x=0;x<nbin;++x){
+        output.push_back(left+x*deltaX);
+      }
+    }
+    else
+      output.push_back(input.back());
+  }
 }
 
+template<class T> void StatFactory::interpolateUp(double* input, int dim, 
vector<T>& output, int nbin)
+{
+  assert(nbin);
+  output.clear();
+  for(int i=0;i<dim;++i){
+    double deltaX=0;
+    double left=input[i];
+    if(i<dim-1){
+      double right=(i<dim-1)? input[i+1]:input[i];
+      deltaX=(right-left)/static_cast<double>(nbin);
+      for(int x=0;x<nbin;++x){
+        output.push_back(left+x*deltaX);
+      }
+    }
+    else
+      output.push_back(input[dim-1]);
+  }
+}
 
-//alternatively: use GNU scientific library:
-// gsl_stats_correlation (const double data1[], const size_t stride1, const 
double data2[], const size_t stride2, const size_t n)
+template<class T> void StatFactory::interpolateDown(const vector<T>& input, 
vector<T>& output, int nbin)
+{
+  assert(input.size());
+  assert(nbin);
+  output.clear();
+  int dim=input.size();
+  int x=0;
+  output.push_back(input[0]);
+  for(int i=1;i<dim;++i){
+    if(i%nbin)
+      continue;
+    else{
+      x=(i-1)/nbin+1;
+      output.push_back(input[i]);
+    }
+  }
+}
+
+template<class T> void StatFactory::interpolateDown(double* input, int dim, 
vector<T>& output, int nbin)
+{
+  assert(nbin);
+  output.clear();
+  int x=0;
+  output.push_back(input[0]);
+  for(int i=1;i<dim;++i){
+    if(i%nbin)
+      continue;
+    else{
+      x=(i-1)/nbin+1;
+      output.push_back(input[i]);
+    }
+  }
+}
+}
+
+#endif /* _STATFACTORY_H_ */
 
+// void Histogram::signature(double m1, double m2, double& k, double& alpha, 
double& beta, double e)
+// {
+//   double y=m1*m1/m2;
+//   beta=F_1(y,0.1,10.0,e);
+//   double fb=F(beta);
+//   double g=exp(lgamma(1.0/beta));
+//   alpha=m1*g/exp(lgamma(2.0/beta));
+//   k=beta/(2*alpha*g);
+// //   cout << "y, alpha, beta: " << y << ", " << alpha << ", " << beta << 
endl;
+// }
 
-using namespace histogram;
+// double Histogram::F(double x)
+// {
+//   double g2=exp(lgamma(2.0/x));
+//   return(g2*g2/exp(lgamma(3.0/x))/exp(lgamma(1.0/x)));
+// }
 
-#endif /* _HISTOGRAM_H_ */
+// //x1 is under estimate, x2 is over estimate, e is error
+// double Histogram::F_1(double y, double x1, double x2, double e)
+// {
+//   double f1=F(x1);
+//   double f2=F(x2);
+//   assert(f1!=f2);
+//   double x=x1+(x2-x1)*(y-f1)/(f2-f1);
+//   double f=F(x);
+//   while(f-y>=e||y-f>=e){
+//     if(f<y)
+//       x1=x;
+//     else 
+//       x2=x;
+//     if(x1==x2)
+//       return x1;
+//     assert(f1!=f2);
+//     x=x1+(x2-x1)*(y-f1)/(f2-f1);
+//     f=F(x);
+//   }
+//   return x;
+// }
diff --git a/src/apps/pkclassify_nn.cc b/src/apps/pkclassify_nn.cc
index 8b2465c..70433f5 100644
--- a/src/apps/pkclassify_nn.cc
+++ b/src/apps/pkclassify_nn.cc
@@ -317,7 +317,6 @@ int main(int argc, char *argv[])
         assert(offset_opt.size()==nband);
       if(scale_opt.size()>1)
         assert(scale_opt.size()==nband);
-      Histogram hist;
       for(int iband=0;iband<nband;++iband){
         if(verbose_opt[0]>=1)
           cout << "scaling for band" << iband << endl;
diff --git a/src/apps/pkclassify_svm.cc b/src/apps/pkclassify_svm.cc
index 56fdfa9..ca7200d 100644
--- a/src/apps/pkclassify_svm.cc
+++ b/src/apps/pkclassify_svm.cc
@@ -349,7 +349,6 @@ int main(int argc, char *argv[])
         assert(offset_opt.size()==nband);
       if(scale_opt.size()>1)
         assert(scale_opt.size()==nband);
-      Histogram hist;
       for(int iband=0;iband<nband;++iband){
         if(verbose_opt[0]>=1)
           std::cout << "scaling for band" << iband << std::endl;
diff --git a/src/apps/pkdumpogr.cc b/src/apps/pkdumpogr.cc
index 53a498b..1d2536e 100644
--- a/src/apps/pkdumpogr.cc
+++ b/src/apps/pkdumpogr.cc
@@ -23,7 +23,6 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 #include <assert.h>
 #include "base/Optionpk.h"
 #include "imageclasses/ImgReaderOgr.h"
-#include "algorithms/Histogram.h"
 #include "pkdumpogr.h"
 
 int main(int argc, char *argv[])
diff --git a/src/apps/pkextract.cc b/src/apps/pkextract.cc
index b950de8..8a7dde0 100644
--- a/src/apps/pkextract.cc
+++ b/src/apps/pkextract.cc
@@ -27,7 +27,7 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 #include "imageclasses/ImgReaderGdal.h"
 #include "imageclasses/ImgWriterOgr.h"
 #include "base/Optionpk.h"
-#include "algorithms/Histogram.h"
+#include "algorithms/StatFactory.h"
 
 #ifndef PI
 #define PI 3.1415926535897932384626433832795
@@ -101,7 +101,7 @@ int main(int argc, char *argv[])
 
   if(verbose_opt[0])
     std::cout << class_opt << std::endl;
-  Histogram hist;
+  statfactory::StatFactory stat;
   Vector2d<unsigned int> posdata;
   unsigned long int nsample=0;
   unsigned long int ntotalvalid=0;
@@ -1590,8 +1590,8 @@ int main(int argc, char *argv[])
               case(2):{//proportion classes
                 if(verbose_opt[0])
                   std::cout << "number of points in polygon: " << 
nPointPolygon << std::endl;
-                hist.normalize_pct(polyValues);
-                // hist.sum(polyValues);
+                stat.normalize_pct(polyValues);
+                // stat.sum(polyValues);
                 for(int index=0;index<polyValues.size();++index){
                   double theValue=polyValues[index];
                   ostringstream fs;
@@ -1607,7 +1607,7 @@ int main(int argc, char *argv[])
                 assert(polygon_opt[0]);//not implemented for points
                 if(verbose_opt[0])
                   std::cout << "number of points in polygon: " << 
nPointPolygon << std::endl;
-                hist.normalize_pct(polyValues);
+                stat.normalize_pct(polyValues);
                 assert(polyValues.size()==2);//11:broadleaved, 12:coniferous
                 if(polyValues[0]>=75)//broadleaved
                   
writePolygonFeature->SetField(label_opt[0].c_str(),static_cast<int>(11));
@@ -1633,7 +1633,7 @@ int main(int argc, char *argv[])
                 if(verbose_opt[0])
                   std::cout << "number of points in polygon: " << 
nPointPolygon << std::endl;
                 //search for min class
-                //todo: change to minClass=hist.max(class_opt) once Optionpk 
is implemented...
+                //todo: change to minClass=stat.max(class_opt) once Optionpk 
is implemented...
                 int minClass=class_opt[class_opt.size()-1];//!hard coded for 
now, maximum class is last entry in class_opt
                 for(int iclass=0;iclass<class_opt.size();++iclass){
                   if(polyValues[iclass]>0){
@@ -2151,8 +2151,8 @@ int main(int argc, char *argv[])
               case(2):{//proportion classes
                 if(verbose_opt[0])
                   std::cout << "number of points in polygon: " << 
nPointPolygon << std::endl;
-                hist.normalize_pct(polyValues);
-                // hist.sum(polyValues);
+                stat.normalize_pct(polyValues);
+                // stat.sum(polyValues);
                 for(int index=0;index<polyValues.size();++index){
                   double theValue=polyValues[index];
                   ostringstream fs;
@@ -2168,7 +2168,7 @@ int main(int argc, char *argv[])
                 assert(polygon_opt[0]);//not implemented for points
                 if(verbose_opt[0])
                   std::cout << "number of points in polygon: " << 
nPointPolygon << std::endl;
-                hist.normalize_pct(polyValues);
+                stat.normalize_pct(polyValues);
                 assert(polyValues.size()==2);//11:broadleaved, 12:coniferous
                 if(polyValues[0]>=75)//broadleaved
                   
writePolygonFeature->SetField(label_opt[0].c_str(),static_cast<int>(11));
@@ -2194,7 +2194,7 @@ int main(int argc, char *argv[])
                 if(verbose_opt[0])
                   std::cout << "number of points in polygon: " << 
nPointPolygon << std::endl;
                 //search for min class
-                //todo: change to minClass=hist.max(class_opt) once Optionpk 
is implemented...
+                //todo: change to minClass=stat.max(class_opt) once Optionpk 
is implemented...
                 int minClass=class_opt[class_opt.size()-1];//!hard coded for 
now, maximum class is last entry in class_opt
                 for(int iclass=0;iclass<class_opt.size();++iclass){
                   if(polyValues[iclass]>0){
diff --git a/src/apps/pkfs_nn.cc b/src/apps/pkfs_nn.cc
index c97f41e..82fbf53 100644
--- a/src/apps/pkfs_nn.cc
+++ b/src/apps/pkfs_nn.cc
@@ -314,7 +314,6 @@ int main(int argc, char *argv[])
     assert(offset_opt.size()==nband);
   if(scale_opt.size()>1)
     assert(scale_opt.size()==nband);
-  Histogram hist;
   for(int iband=0;iband<nband;++iband){
     if(verbose_opt[0]>1)
       std::cout << "scaling for band" << iband << std::endl;
diff --git a/src/apps/pklas2img.cc b/src/apps/pklas2img.cc
index 78f32da..8496c8a 100644
--- a/src/apps/pklas2img.cc
+++ b/src/apps/pklas2img.cc
@@ -23,7 +23,7 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 #include "imageclasses/ImgWriterGdal.h"
 #include "imageclasses/ImgReaderOgr.h"
 #include "fileclasses/FileReaderLas.h"
-#include "algorithms/Histogram.h"
+#include "algorithms/StatFactory.h"
 #include "algorithms/Filter2d.h"
 
 int main(int argc,char **argv) {
@@ -316,7 +316,7 @@ int main(int argc,char **argv) {
   std::cout << "processing LiDAR points" << std::endl;
   progress=0;
   pfnProgress(progress,pszMessage,pProgressArg);
-  Histogram hist;
+  statfactory::StatFactory stat;
   //fill inputData in outputData
   if(composite_opt[0]=="profile"){
     assert(postFilter_opt[0]=="none");
@@ -332,17 +332,17 @@ int main(int argc,char **argv) {
       if(!inputData[irow][icol].size())
         outputData[irow][icol]=(static_cast<float>((flag_opt[0])));
       else{
-        Histogram hist;
+        statfactory::StatFactory stat;
         if(composite_opt[0]=="min")
-          outputData[irow][icol]=hist.min(inputData[irow][icol]);
+          outputData[irow][icol]=stat.min(inputData[irow][icol]);
         else if(composite_opt[0]=="max")
-          outputData[irow][icol]=hist.max(inputData[irow][icol]);
+          outputData[irow][icol]=stat.max(inputData[irow][icol]);
         else if(composite_opt[0]=="median")
-          outputData[irow][icol]=hist.median(inputData[irow][icol]);
+          outputData[irow][icol]=stat.median(inputData[irow][icol]);
         else if(composite_opt[0]=="mean")
-          outputData[irow][icol]=hist.mean(inputData[irow][icol]);
+          outputData[irow][icol]=stat.mean(inputData[irow][icol]);
         else if(composite_opt[0]=="sum")
-          outputData[irow][icol]=hist.sum(inputData[irow][icol]);
+          outputData[irow][icol]=stat.sum(inputData[irow][icol]);
         else if(composite_opt[0]=="first")
           outputData[irow][icol]=inputData[irow][icol][0];
         else if(composite_opt[0]=="last")
@@ -355,11 +355,11 @@ int main(int argc,char **argv) {
           }
           float min=0;
           float max=0;
-          
hist.minmax(inputData[irow][icol],inputData[irow][icol].begin(),inputData[irow][icol].end(),min,max);
+          
stat.minmax(inputData[irow][icol],inputData[irow][icol].begin(),inputData[irow][icol].end(),min,max);
           if(verbose_opt[0])
             std::cout << "min,max: " << min << "," << max << std::endl;
           if(max>min){
-            
hist.percentiles(inputData[irow][icol],inputData[irow][icol].begin(),inputData[irow][icol].end(),profile,nband,min,max);
+            
stat.percentiles(inputData[irow][icol],inputData[irow][icol].begin(),inputData[irow][icol].end(),profile,nband,min,max);
             assert(profile.size()==nband);
             for(int iband=0;iband<nband;++iband)
               outputProfile[iband][icol]=profile[iband];
diff --git a/src/apps/pkmosaic.cc b/src/apps/pkmosaic.cc
index 62ae98c..75b907b 100644
--- a/src/apps/pkmosaic.cc
+++ b/src/apps/pkmosaic.cc
@@ -26,7 +26,7 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 #include "imageclasses/ImgReaderOgr.h"
 #include "base/Vector2d.h"
 #include "base/Optionpk.h"
-#include "algorithms/Histogram.h"
+#include "algorithms/StatFactory.h"
 
 using namespace std;
 
@@ -383,7 +383,7 @@ int main(int argc, char *argv[])
   vector<short> fileBuffer(ncol);//holds the number of used files
   Vector2d<short> maxBuffer;//buffer used for maximum voting
   Vector2d<double> readBuffer(nband);
-  Histogram hist;
+  statfactory::StatFactory stat;
   if(mrule_opt[0]==1)//ndvi
     assert(ruleBand_opt.size()==2);
   if(mrule_opt[0]==6){//max voting
@@ -814,7 +814,7 @@ int main(int argc, char *argv[])
       else{
         for(int icol=0;icol<imgWriter.nrOfCol();++icol){
           vector<short>::iterator maxit=maxBuffer[icol].begin();
-          
maxit=hist.max(maxBuffer[icol],maxBuffer[icol].begin(),maxBuffer[icol].end());
+          
maxit=stat.max(maxBuffer[icol],maxBuffer[icol].begin(),maxBuffer[icol].end());
           writeBuffer[0][icol]=distance(maxBuffer[icol].begin(),maxit);
           fileBuffer[icol]=*(maxit);
         }
@@ -838,17 +838,17 @@ int main(int argc, char *argv[])
           case(5):
             assert(storeBuffer[bands[iband]][icol].size()==fileBuffer[icol]);
             if(storeBuffer[bands[iband]][icol].size())
-              
writeBuffer[iband][icol]=hist.mean(storeBuffer[bands[iband]][icol]);
+              
writeBuffer[iband][icol]=stat.mean(storeBuffer[bands[iband]][icol]);
             break;
           case(7):
             assert(storeBuffer[bands[iband]][icol].size()==fileBuffer[icol]);
             if(storeBuffer[bands[iband]][icol].size())
-              
writeBuffer[iband][icol]=hist.median(storeBuffer[bands[iband]][icol]);
+              
writeBuffer[iband][icol]=stat.median(storeBuffer[bands[iband]][icol]);
             break;
           case(8)://sum
             assert(storeBuffer[bands[iband]][icol].size()==fileBuffer[icol]);
             if(storeBuffer[bands[iband]][icol].size())
-              
writeBuffer[iband][icol]=hist.sum(storeBuffer[bands[iband]][icol]);
+              
writeBuffer[iband][icol]=stat.sum(storeBuffer[bands[iband]][icol]);
             break;
           default:
             break;
diff --git a/src/apps/pkopt_svm.cc b/src/apps/pkopt_svm.cc
index 903f046..5b30995 100644
--- a/src/apps/pkopt_svm.cc
+++ b/src/apps/pkopt_svm.cc
@@ -337,7 +337,6 @@ int main(int argc, char *argv[])
     assert(offset_opt.size()==nband);
   if(scale_opt.size()>1)
     assert(scale_opt.size()==nband);
-  Histogram hist;
   for(int iband=0;iband<nband;++iband){
     if(verbose_opt[0]>1)
       std::cout << "scaling for band" << iband << std::endl;
diff --git a/src/apps/pksensormodel.cc b/src/apps/pksensormodel.cc
index 9faf0e1..a63a589 100644
--- a/src/apps/pksensormodel.cc
+++ b/src/apps/pksensormodel.cc
@@ -25,7 +25,7 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 #include <nlopt.hpp>
 #include "base/Optionpk.h"
 #include "algorithms/OptFactory.h"
-#include "algorithms/Histogram.h"
+#include "algorithms/StatFactory.h"
 #include "pksensormodel.h"
 
 double objFunction(const std::vector<double> &x, std::vector<double> &grad, 
void *my_func_data){
@@ -599,7 +599,6 @@ int main(int argc, char *argv[])
       std::cout << "opening output file: " << output_opt[0] << std::endl;
     outputStream.open(output_opt[0].c_str());
   }
-  Histogram hist;
   vector<double> errorv;
 
   oSourceSRS.importFromEPSG(4326);
@@ -657,7 +656,8 @@ int main(int argc, char *argv[])
   if(mean_opt[0]){
     double theMean=0;
     double theVar=0;
-    hist.meanVar(errorv,theMean,theVar);
+    statfactory::StatFactory stat;
+    stat.meanVar(errorv,theMean,theVar);
     if(output_opt.size())
       outputStream << setprecision(12) << "mean stddev: " << theMean << " " << 
sqrt(theVar) << std::endl;
     else
diff --git a/src/apps/pkstat.cc b/src/apps/pkstat.cc
index 1467dac..bec8c1a 100644
--- a/src/apps/pkstat.cc
+++ b/src/apps/pkstat.cc
@@ -23,7 +23,7 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 #include <math.h>
 #include "base/Optionpk.h"
 #include "fileclasses/FileReaderAscii.h"
-#include "algorithms/Histogram.h"
+#include "algorithms/StatFactory.h"
 
 using namespace std;
 
@@ -91,7 +91,7 @@ int main(int argc, char *argv[])
   }
 
   vector< vector<double> > dataVector(col_opt.size());
-  vector< vector<int> > histVector(col_opt.size());
+  vector< vector<int> > statVector(col_opt.size());
 
   FileReaderAscii asciiReader(input_opt[0]);
   asciiReader.setFieldSeparator(fs_opt[0]);
@@ -103,7 +103,7 @@ int main(int argc, char *argv[])
   assert(dataVector.size());
   double minValue=min_opt[0];
   double maxValue=max_opt[0];
-  Histogram hist;
+  statfactory::StatFactory stat;
   for(int icol=0;icol<col_opt.size();++icol){
     if(!dataVector[icol].size()){
       std::cerr << "Warning: dataVector[" << icol << "] is empty" << std::endl;
@@ -112,56 +112,56 @@ int main(int argc, char *argv[])
     if(size_opt[0])
       cout << "sample size column " << col_opt[icol] << ": " << 
dataVector[icol].size() << endl;
     if(mean_opt[0])
-      cout << "mean value column " << col_opt[icol] << ": " << 
hist.mean(dataVector[icol]) << endl;
+      cout << "mean value column " << col_opt[icol] << ": " << 
stat.mean(dataVector[icol]) << endl;
     if(var_opt[0])
-      cout << "variance value column " << col_opt[icol] << ": " << 
hist.var(dataVector[icol]) << endl;
+      cout << "variance value column " << col_opt[icol] << ": " << 
stat.var(dataVector[icol]) << endl;
     if(stdev_opt[0])
-      cout << "standard deviation column " << col_opt[icol] << ": " << 
sqrt(hist.var(dataVector[icol])) << endl;
+      cout << "standard deviation column " << col_opt[icol] << ": " << 
sqrt(stat.var(dataVector[icol])) << endl;
     if(skewness_opt[0])
-      cout << "skewness value column " << col_opt[icol] << ": " << 
hist.skewness(dataVector[icol]) << endl;
+      cout << "skewness value column " << col_opt[icol] << ": " << 
stat.skewness(dataVector[icol]) << endl;
     if(kurtosis_opt[0])
-      cout << "kurtosis value column " << col_opt[icol] << ": " << 
hist.kurtosis(dataVector[icol]) << endl;
+      cout << "kurtosis value column " << col_opt[icol] << ": " << 
stat.kurtosis(dataVector[icol]) << endl;
     if(sum_opt[0]){
       cout << setprecision(2);
-      cout << fixed << "sum column " << col_opt[icol] << ": " << 
(hist.sum(dataVector[icol])) << endl;
+      cout << fixed << "sum column " << col_opt[icol] << ": " << 
(stat.sum(dataVector[icol])) << endl;
     }
     if(median_opt[0])
-      cout << "median value column " << col_opt[icol] << ": " << 
hist.median(dataVector[icol]) << endl;
+      cout << "median value column " << col_opt[icol] << ": " << 
stat.median(dataVector[icol]) << endl;
     if(minmax_opt[0]){
-      cout << "min value  column " << col_opt[icol] << ": " << 
hist.min(dataVector[icol]) << endl;
-      cout << "max value column " << col_opt[icol] << ": " << 
hist.max(dataVector[icol]) << endl;
+      cout << "min value  column " << col_opt[icol] << ": " << 
stat.min(dataVector[icol]) << endl;
+      cout << "max value column " << col_opt[icol] << ": " << 
stat.max(dataVector[icol]) << endl;
     }
     if(histogram_opt[0]){
       if(verbose_opt[0])
         std::cout << "calculating histogram for col " << icol << std::endl;
-      
hist.distribution(dataVector[icol],dataVector[icol].begin(),dataVector[icol].end(),histVector[icol],nbin_opt[0],minValue,maxValue);
+      
stat.distribution(dataVector[icol],dataVector[icol].begin(),dataVector[icol].end(),statVector[icol],nbin_opt[0],minValue,maxValue);
       if(verbose_opt[0])
         std::cout << "min and max values: " << minValue << ", " << maxValue << 
std::endl;
     }
   }
   if(correlation_opt[0]){
     assert(dataVector.size()==2);
-    cout << "correlation between columns " << col_opt[0] << " and " << 
col_opt[1] << ": " << hist.correlation(dataVector[0],dataVector[1]) << endl;
+    cout << "correlation between columns " << col_opt[0] << " and " << 
col_opt[1] << ": " << stat.correlation(dataVector[0],dataVector[1]) << endl;
   }
   if(rmse_opt[0]){
     assert(dataVector.size()==2);
-    cout << "root mean square error between columns " << col_opt[0] << " and " 
<< col_opt[1] << ": " << hist.rmse(dataVector[0],dataVector[1]) << endl;
+    cout << "root mean square error between columns " << col_opt[0] << " and " 
<< col_opt[1] << ": " << stat.rmse(dataVector[0],dataVector[1]) << endl;
   }
   if(reg_opt[0]){
     assert(dataVector.size()==2);
     double c0=0;
     double c1=0;
-    double r2=hist.linear_regression(dataVector[0],dataVector[1],c0,c1);
+    double r2=stat.linear_regression(dataVector[0],dataVector[1],c0,c1);
     cout << "linear regression between columns: " << col_opt[0] << " and " << 
col_opt[1] << ": " << c0 << "+" << c1 << " * x " << " with R^2 (square 
correlation coefficient): " << r2 << endl;
   }
   if(histogram_opt[0]){
-    for(int irow=0;irow<histVector.begin()->size();++irow){
+    for(int irow=0;irow<statVector.begin()->size();++irow){
       std::cout << (maxValue-minValue)*irow/(nbin_opt[0]-1)+minValue << " ";
       for(int icol=0;icol<col_opt.size();++icol){
         if(relative_opt[0])
-          std::cout << 
100.0*static_cast<double>(histVector[icol][irow])/static_cast<double>(dataVector[icol].size());
+          std::cout << 
100.0*static_cast<double>(statVector[icol][irow])/static_cast<double>(dataVector[icol].size());
         else
-          std::cout << histVector[icol][irow];
+          std::cout << statVector[icol][irow];
         if(icol<col_opt.size()-1)
           cout << " ";
       }
diff --git a/src/apps/pkstatogr.cc b/src/apps/pkstatogr.cc
index a1d497b..076259f 100644
--- a/src/apps/pkstatogr.cc
+++ b/src/apps/pkstatogr.cc
@@ -23,7 +23,7 @@ along with pktools.  If not, see 
<http://www.gnu.org/licenses/>.
 #include <assert.h>
 #include "base/Optionpk.h"
 #include "imageclasses/ImgReaderOgr.h"
-#include "algorithms/Histogram.h"
+#include "algorithms/StatFactory.h"
 
 int main(int argc, char *argv[])
 {
@@ -70,7 +70,7 @@ int main(int argc, char *argv[])
 
   ImgReaderOgr inputReader(input_opt[0]);
   vector<double> theData;
-  Histogram hist;
+  statfactory::StatFactory stat;
   //todo: implement ALL
 
   for(int ifield=0;ifield<fieldname_opt.size();++ifield){
@@ -84,10 +84,10 @@ int main(int argc, char *argv[])
     int nbin=(nbin_opt[0]>1)? nbin_opt[0] : 2;
     std::cout << " --fname " << fieldname_opt[ifield];
     try{
-      
hist.distribution(theData,theData.begin(),theData.end(),binData,nbin,minimum,maximum);
+      
stat.distribution(theData,theData.begin(),theData.end(),binData,nbin,minimum,maximum);
       double theMean=0;
       double theVar=0;
-      hist.meanVar(theData,theMean,theVar);
+      stat.meanVar(theData,theMean,theVar);
       if(mean_opt[0])
         std::cout << " --mean " << theMean;
       if(stdev_opt[0])
@@ -97,7 +97,7 @@ int main(int argc, char *argv[])
       if(max_opt[0])
         cout << " -M " << maximum;
       if(median_opt[0])
-        std::cout << " -median " << hist.median(theData);
+        std::cout << " -median " << stat.median(theData);
       if(size_opt[0])
         std::cout << " -size " << theData.size();
       std::cout << std::endl;

-- 
Alioth's /usr/local/bin/git-commit-notice on 
/srv/git.debian.org/git/pkg-grass/pktools.git

_______________________________________________
Pkg-grass-devel mailing list
Pkg-grass-devel@lists.alioth.debian.org
http://lists.alioth.debian.org/cgi-bin/mailman/listinfo/pkg-grass-devel

Reply via email to