I get a workaround by lifting the definition of find_term_and_apply out to the 
top-level.

Michael



On 22/6/20, 10:54, "polyml on behalf of Norrish, Michael (Data61, Acton)" 
<polyml-boun...@inf.ed.ac.uk on behalf of michael.norr...@data61.csiro.au> 
wrote:

I don't expect this in isolation will help, but the following HOL function 
causes the compiler to emit a 

  Fail "Exception- Option unexpectedly raised while compiling"

message.

- - - 

fun EXISTS_SEP_REWRITE_RULE rw th = let (* possibly fragile *)
  val (p,q) = dest_eq (concl (SPEC_ALL rw))
  val frame = genvar(type_of p)
  val vs = list_dest dest_sep_exists p
  val lhs = mk_star(last vs,frame)
  val vs = butlast vs
  fun find_exists_match lhs tm = let
    val (v,t) = dest_sep_exists tm
    val vs = list_dest dest_sep_exists tm
    in (butlast vs,last vs,generic_star_match [] lhs (last vs)) end
  fun find_term_and_apply f tm = f (find_term (can f) tm)
  fun foo th = let
    val (ws,tm,s) = find_term_and_apply (find_exists_match lhs) (concl th)
    val (t,t2) = (dest_eq (concl (SPEC_ALL rw)))
    val zs = list_dest dest_sep_exists t
    val (zs,z) = (butlast zs,list_dest dest_star (last zs))
    val xs = list_dest dest_star tm
    val ys = filter (fn y => not (tmem y (map (subst s) z))) xs
    val t3 = foldr mk_sep_exists (subst s (list_mk_star z (type_of frame))) 
(map (subst s) zs)
    val goal = foldr mk_sep_exists (list_mk_star (t3::ys) (type_of frame)) ws
    val goal = mk_eq(foldr mk_sep_exists tm ws,goal)
    val lemma = auto_prove "EXISTS_SEP_REWRITE_RULE" (goal,
      SIMP_TAC std_ss [GSYM rw]
      THEN SIMP_TAC (std_ss++sep_cond_ss) [SEP_CLAUSES]
      THEN CONV_TAC (BINOP_CONV SEP_EXISTS_AC_CONV)
      THEN SIMP_TAC (std_ss++star_ss) [AC CONJ_ASSOC CONJ_COMM])
    val lemma = CONV_RULE (RAND_CONV (ONCE_REWRITE_CONV [rw]
                  THENC SIMP_CONV std_ss [SEP_CLAUSES])) lemma
    in foo (RW1 [lemma] th) end handle HOL_ERR _ => th
  in foo th end;

- - -

This comes from HOL4's examples/machine-code/hoare-triple/helperLib.sml (line 
667 onwards).

I will try to reduce it to a smaller instance.

Michael

_______________________________________________
polyml mailing list
polyml@inf.ed.ac.uk
http://lists.inf.ed.ac.uk/mailman/listinfo/polyml

_______________________________________________
polyml mailing list
polyml@inf.ed.ac.uk
http://lists.inf.ed.ac.uk/mailman/listinfo/polyml

Reply via email to