Here is the first invmod method invmod=: 4 : 0 NB. inverse of y mod x (x|y) NB. uc vc ud vd d c where d c init as x y NB. q =. d<.@%c -- (4&{ <.@%~ {:)
a=. imw^:_ ] 1x,0x,0x,1x,x,y if. 1~: 4{a do. 0 return. end. if.0< 2{ a do. 2{ a else. x+2{a end. ) imw =: ((2&{ - {. * 4&{ <.@% {:),(3&{ - 1&{ * 4&{ <.@% {:), 2&{., ({: | 4&{) ,~{:)^:(0 ~: {:) testinvmod =: (0 1 e.~ [ | ]* invmod) 11 invmod 3 4 (14114588 +i.10) ( invmod)"0 1 ] 3x 4704863 0 9409727 4704864 0 9409729 4704865 0 9409731 4704866 ts '(14114588x +i.10000) (testinvmod )"0 ] 3x' 2.74558/sec 3.14547MB ts '(14114588 +i.10000) (invmod )"0 ] 3' 2.96905/sec 3.26822MB ----- Original Message ----- From: Pascal Jasmin <godspiral2...@yahoo.ca> To: "programm...@jsoftware.com" <programm...@jsoftware.com> Cc: Sent: Wednesday, January 29, 2014 11:35:19 AM Subject: [Jprogramming] math requests With all of the mathematicians on this list, these functions have likely been implemented before in J. elyptic curve point add, multiplication and double a python reference implementation: https://github.com/warner/python-ecdsa/blob/master/ecdsa/ellipticcurve.py the functions are: __add__ __mul__ and double if I may suggest J explicit signatures for the first 2 functions as: F =: 4 : 0 'yx yy yo' =. y 'xx xy xo' =. x ) Some other methods than the python reference could be considered here: http://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication also appreciated if you have in implementation of inverse_mod for reference function of same nate at: https://github.com/warner/python-ecdsa/blob/master/ecdsa/numbertheory.py ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm