#I.0=(iscomplex=isnotreal)1 j. -:^:a:1 1030 So, for example:
(iscomplex=isnotreal)1j1e_99 0 Basically, the epsilon used for tolerant equality is much coarser than the ratio of real to imaginary which is possible in J's complex representation. Thanks, -- Raul On Sat, Nov 29, 2014 at 11:22 PM, Henry Rich <[email protected]> wrote: > Two ways of detecting complex numbers have been suggested: > > iscomplex =. 0 ~: 11&o. > isnotreal =. ~:~ + > > They are not equivalent. > iscomplex a > 1 > isnotreal a > 0 > > What is an example for the finite number a? > > Henry Rich > > On 11/29/2014 10:20 PM, Linda Alvord wrote: >> >> \Very nice. Or, if it has a different conjugate it must be complex. >> Linda >> >> -----Original Message----- >> From: [email protected] >> [mailto:[email protected]] On Behalf Of Lippu Esa >> Sent: Saturday, November 29, 2014 4:37 PM >> To: '[email protected]' >> Subject: Re: [Jprogramming] Better way to locate coomplex or real numbers >> in >> an array >> >> A real number equals its conjugate, so (~:+) works too: >> >> ]A=:(i:2)j./i:2 >> _2j_2 _2j_1 _2 _2j1 _2j2 >> _1j_2 _1j_1 _1 _1j1 _1j2 >> 0j_2 0j_1 0 0j1 0j2 >> 1j_2 1j_1 1 1j1 1j2 >> 2j_2 2j_1 2 2j1 2j2 >> (~:+) A >> 1 1 0 1 1 >> 1 1 0 1 1 >> 1 1 0 1 1 >> 1 1 0 1 1 >> 1 1 0 1 1 >> >> Esa >> -----Original Message----- >> From: [email protected] >> [mailto:[email protected]] On Behalf Of Henry Rich >> Sent: 29. marraskuuta 2014 05:34 >> To: [email protected] >> Subject: Re: [Jprogramming] Better way to locate coomplex or real numbers >> in >> an array >> >> ]A=:(i:2)j./i:2 >> _2j_2 _2j_1 _2 _2j1 _2j2 >> _1j_2 _1j_1 _1 _1j1 _1j2 >> 0j_2 0j_1 0 0j1 0j2 >> 1j_2 1j_1 1 1j1 1j2 >> 2j_2 2j_1 2 2j1 2j2 >> (0 ~: 11&o.) A >> 1 1 0 1 1 >> 1 1 0 1 1 >> 1 1 0 1 1 >> 1 1 0 1 1 >> 1 1 0 1 1 >> >> Henry Rich >> >> On 11/28/2014 10:27 PM, Linda Alvord wrote: >>> >>> A is an array of real and complex numbers. Is there an easier way to >>> locate all the complex numbers. Signum locates each numbers >>> intersection with a line from it to the origin and the circle. >>> >>> >>> >>> ]A=:(i:2)j./i:2 >>> >>> _2j_2 _2j_1 _2 _2j1 _2j2 >>> >>> _1j_2 _1j_1 _1 _1j1 _1j2 >>> >>> 0j_2 0j_1 0 0j1 0j2 >>> >>> 1j_2 1j_1 1 1j1 1j2 >>> >>> 2j_2 2j_1 2 2j1 2j2 >>> >>> >>> >>> *A >>> >>> _0.707107j_0.707107 _0.894427j_0.447214 _1 _0.894427j0.447214 >>> _0.707107j0.707107 >>> >>> _0.447214j_0.894427 _0.707107j_0.707107 _1 _0.707107j0.707107 >>> _0.447214j0.894427 >>> >>> 0j_1 0j_1 0 0j1 0j1 >>> >>> 0.447214j_0.894427 0.707107j_0.707107 1 0.707107j0.707107 >>> 0.447214j0.894427 >>> >>> 0.707107j_0.707107 0.894427j_0.447214 1 0.894427j0.447214 >>> 0.707107j0.707107 >>> >>> >>> >>> -.(*A)e. _1 0 1 >>> >>> 1 1 0 1 1 >>> >>> 1 1 0 1 1 >>> >>> 1 1 0 1 1 >>> >>> 1 1 0 1 1 >>> >>> 1 1 0 1 1 >>> >>> >>> >>> I am looking for the best way to locate all the complex numbers. >>> >>> >>> >>> Linda >>> >>> ---------------------------------------------------------------------- >>> For information about J forums see http://www.jsoftware.com/forums.htm >>> >> ---------------------------------------------------------------------- >> For information about J forums see http://www.jsoftware.com/forums.htm >> ---------------------------------------------------------------------- >> For information about J forums see http://www.jsoftware.com/forums.htm >> >> ---------------------------------------------------------------------- >> For information about J forums see http://www.jsoftware.com/forums.htm >> > ---------------------------------------------------------------------- > For information about J forums see http://www.jsoftware.com/forums.htm ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm
