A big idea in Grade 4 is helping students understand fully how base 10
works.  Here is a dialog which might help students to understand number
systems in general. 

So, if you have 64 different colors, how high can you count with unique
numbers?

Here's the dialog?

 

load 'viewmat'

base=: 13 :'(3#y)#:i.y^3'

base 2

sh=: 13 :'(2 1*$y)$,y,"1($y)$>:>./y'

sh base 2

sw=: 13 :'(,|:i.2 3){"1 y,"1($y)$,>:>./y'

sw base 2

s=: 13 :'sw sh y'

s base 2

elz=: 13 :'(>:>./,y)*0=+/\"1 y'

elz base 2

co=: 13 :'s(elz base y)+base y'

[CO2=:co 2

[PAL2=:5 3$255 0 0 0 0 255,9#255

PAL2 viewmat CO2

[PAL3=:6 3$0 255 0 255 0 0 0 0 255,9#255

PAL3 viewmat co 3

rpal=: 13 :'(<:?>:(y,3)$255),3 3$255'

(rpal 3) viewmat co 3

(rpal 4) viewmat co 4

(rpal 5) viewmat co 5

 

base NB. number base

sh    NB.  stretch height

sw    NB.  stretch width

s     NB.  stretch both

elz   NB.  eliminate leading zeros

co    NB.  count to

rpal  NB.  random palletes

Linda

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to