Very nice, Raul!  Much shorter than my Rube Goldberg approach.  --Kip

On Saturday, March 12, 2016, Raul Miller <[email protected]> wrote:

>    cv=: ([: (+`%/) 1 }.,)\@|:
>
> I hope this helps...
>
> --
> Raul
>
>
> On Sat, Mar 12, 2016 at 1:21 PM, Kip Murray <[email protected]
> <javascript:;>> wrote:
> > Here you go:
> >
> >     nume =: 1 , 1 % 4x * _1 + 4 * [: *:@>:@i. <:
> >
> >     dene =: 1 1r2 , 1 $~ _2 + ]
> >
> > I think I got those from Abramowitz and Stegun.
> >
> >    (_1 , nume 6),: dene 7
> >  _1   1 1r12 1r60 1r140 1r252 1r396
> >    1 1r2    1    1     1     1     1
> >
> > --Kip
> >
> >
> > On Saturday, March 12, 2016, Raul Miller <[email protected]
> <javascript:;>> wrote:
> >
> >> How do you compute the first two rows?
> >>
> >> Thanks,
> >>
> >> --
> >> Raul
> >>
> >> On Saturday, March 12, 2016, Kip Murray <[email protected]
> <javascript:;>
> >> <javascript:;>> wrote:
> >>
> >> > The challenge is at the end.  First a table for a finite continued
> >> fraction
> >> > that approximates e =: ^ 1 .
> >> >  --Kip Murray
> >> >
> >> >
> >> > The table below summarizes a finite continued fraction which begins
> >> >
> >> >          1
> >> >  1 + -------------
> >> >              1r12
> >> >      1r2 + --------
> >> >                 1r60
> >> >            1 + ------
> >> >
> >> >                1 + .
> >> >                      .
> >> >                        .
> >> >
> >> >     table
> >> >  _1   1 1r12   1r60     1r140       1r252          1r396
> >> >   1 1r2    1      1         1           1              1
> >> >   1   3 19r7 193r71 2721r1001 49171r18089 1084483r398959
> >> >
> >> >
> >> > You must ignore the _1 in the upper left corner. You see how the first
> >> row
> >> > identifies numerators and the second row numbers on the "diagonal" of
> the
> >> > continued fraction.
> >> >
> >> >
> >> > The third row gives the "convergents", results of terminating the
> >> continued
> >> > fraction at a diagonal number.  The first four convergents are
> >> >
> >> >  1 , (1 + 1 % 1r2) , (1 + 1 % 1r2 + 1r12 % 1) , (1 + 1 % 1r2 + 1r12 %
> 1 +
> >> > 1r60 % 1)
> >> >
> >> >
> >> > The convergents of this continued fraction approximate the number  e
> =:
> >> ^ 1
> >> > .
> >> >
> >> >     2 * 0.5 * {: table
> >> >  1 3 2.714285714 2.718309859 2.718281718 2.718281829 2.718281828
> >> >
> >> >
> >> > Now, how would you write verb cv which provides the third row of the
> >> table
> >> > given the first two?
> >> >
> >> >     2 {. table
> >> >  _1   1 1r12 1r60 1r140 1r252 1r396
> >> >   1 1r2    1    1     1     1     1
> >> >
> >> >     cv 2 {. table
> >> >  1 3 19r7 193r71 2721r1001 49171r18089 1084483r398959
> >> >
> >> >
> >> > --Kip Murray
> >> >
> >> >
> >> >
> >> > --
> >> > Sent from Gmail Mobile
> >> > ----------------------------------------------------------------------
> >> > For information about J forums see
> http://www.jsoftware.com/forums.htm
> >> ----------------------------------------------------------------------
> >> For information about J forums see http://www.jsoftware.com/forums.htm
> >
> >
> >
> > --
> > Sent from Gmail Mobile
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm



-- 
Sent from Gmail Mobile
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to