Another path from the polar shamrock: polar paint roses load 'plot' d=: 13 :'(0{x)-(-/x)*(i.>:y)%y' NB. domain intervals f=: 13 :'(0 1) d y' rose=: 13 :'(1 o.x*y) (*"1) 2 1 o./y' T=:2p1 plot ;/1 rose (0,-:T) d 385 plot ;/(1 rose (0,-:T) d 385)*/f 385 plot ;/2 rose (0,-:T) d 385 plot ;/(2 rose (0,-:T) d 385)*/f 385 plot ;/2 rose (0,T) d 385 plot ;/(2 rose (0,T) d 385)*/f 385 plot ;/3 rose (0,-:T) d 385 plot ;/(3 rose (0,-:T) d 385)*/f 385
Since the plots don't show up in the e-mail, I attached the script. Linda -----Original Message----- From: programming-boun...@jsoftware.com [mailto:programming-boun...@jsoftware.com] On Behalf Of Linda Alvord Sent: Tuesday, March 27, 2012 10:26 AM To: 'Programming forum' Subject: Re: [Jprogramming] Challenge 8 A Shamrock for St. Patrick Here's an interesting aspect at the heart of David Ward Lambert's shamrock. He creates one trifolium. He rotates the graph slightly clockwise and also slightly counterclockwise. He then superposes one on the other and the leaves look quite like the leaves of a real shamrock. d=: 13 :'(0{x)-(-/x)*(i.>:y)%y' NB. domain intervals T=:2p1 NB. Tau tf=: 13 :'(1 o. ((3*x),3) p. y) (*"1) 2 1 o./y' NB. trifolium e=:(_1 1) d 13 NB. grid domain f=:%:(0,1) d 13 NB. frame domain masks=: 0&$: : (4 : 0)"0 NB. shamrock masks INDEXES=: ~. <"1 ,/ |: e I. (x tf (0,T) d 13)*/f 1 INDEXES } s=:0 $~ 2 # >: y ) (1 _1*0.2) masks 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]shamrock=:' X'{~+./ (1 _1*0.2) masks 13 NB. combine masks XX XXXX XXXXX XXXXX XX XXXX XXXXXXXXX XXXXXX XXXXXXXXX XX XXXX XXXXX XXXXX XXXX XX 1j1&#"1 shamrock NB. expand shamrock X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Linda -----Original Message----- From: programming-boun...@jsoftware.com [mailto:programming-boun...@jsoftware.com] On Behalf Of Linda Alvord Sent: Wednesday, March 21, 2012 7:49 PM To: 'Programming forum' Subject: Re: [Jprogramming] Challenge 8 A Shamrock for St. Patrick Copy the expression below into ijix and run display. A lovely graph of a trifolium appears. It seems that it is arriving by mental telepathy. There is no sign of 'radar' anyhere. Use load 'plot' and there is no sign of 'radar'. It is not in names_j_ or names_z_ . So where and what is it? -----Original Message----- From: programming-boun...@jsoftware.com [mailto:programming-boun...@jsoftware.com] On Behalf Of Henry Rich Sent: Wednesday, March 21, 2012 7:29 AM To: Programming forum Subject: Re: [Jprogramming] Challenge 8 A Shamrock for St. Patrick Cute! J version: 'radar' plot 0 2p1;'1 + (cos 3*y) + *: sin 3*y' Henry Rich On 3/21/2012 5:55 AM, Boyko Bantchev wrote: > FWIW, the cleanest mathematical / programmable trefoil that I know of > is the following (I am too lazy to do it in J, so Gnuplot): > > set size ratio 1.08 > set parametric > set polar > plot [0:2*pi] t,1+cos(3*t)+sin(3*t)**2 > ---------------------------------------------------------------------- > For information about J forums see http://www.jsoftware.com/forums.htm > ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm
---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm