Thanks for your answers, Christoph: I am slightly confused on the version of your supplied binaries. The documentation (and source!) for 2011.1 regarding prepared calls says that block size is deprecated in prepare and should be supplied in prepared_call. Using the compiled version requires me to use the old syntax, or I'll get a type error:
kernel_advanceSystem.prepare("PP") gives TypeError: function_prepare() takes at least 3 arguments (2 given) but kernel_advanceSystem.prepare("PP", block=blockDim) works. Either I am mistaken on the versions, or there might have been a mix-up with the sources. Easy way to reproduce is to open examples/hello_gpu.py and add a line: multiply_them.prepare("PPP") Best regards, Jonas On Fri, Apr 29, 2011 at 5:36 AM, <brett.br...@csiro.au> wrote: > Great! Works well. Thanks Christoph! > > -----Original Message----- > From: pycuda-boun...@tiker.net [mailto:pycuda-boun...@tiker.net] On Behalf Of > Christoph Gohlke > Sent: Thursday, 28 April 2011 6:03 PM > To: pycuda@tiker.net > Subject: Re: [PyCUDA] Switch off verbose output from PyCUDA > > The PyCUDA binary you use was built with CUDAPP_TRACE_CUDA defined. Try > the updated installer. > > Christoph > > > On 4/28/2011 12:09 AM, brett.br...@csiro.au wrote: >> Hi >> >> I seem to have successfully installed PyCUDA on a Windows 7 64bit >> machine, Python 2.7.1, CUDA 3.2, PyCUDA 2011.1 using instructions from >> Christoph Bussler "Windows 7 64-bit with Visual Studio Professional 2008 >> (Strictly Binary Versions)". Problem is... it runs very verbosely, and >> hence, slowly. Below is an example output from running the demo.py >> script from the PyCUDA source. >> >> How can I switch off the verbose output? >> >> Thanks >> >> Regards >> >> Brett >> >> C:\Users\bry074>python >> P:\SAF\AICAS\GPU_code_testing\Copy_LinuxGPU\python_scripts\pycuda_demo\demo.py >> >> >> cuInit >> >> cuDeviceGetCount >> >> cuDeviceGet >> >> cuCtxCreate >> >> cuCtxGetDevice >> >> cuMemAlloc >> >> cuMemcpyHtoD >> >> cuCtxGetDevice >> >> cuDeviceComputeCapability >> >> cuModuleLoadDataEx >> >> cuModuleGetFunction >> >> cuFuncSetBlockShape (doublify) >> >> cuParamSetv (doublify) >> >> cuParamSetSize (doublify) >> >> cuLaunchGrid (doublify) >> >> cuMemcpyDtoH >> >> original array: >> >> [[-1.85515511 -0.61387902 -0.9409495 0.57415462] >> >> [ 2.04725552 -0.43586037 1.19255412 -0.46156505] >> >> [-0.83301312 0.76718497 -0.53578204 0.16794606] >> >> [-1.24282026 -0.25060421 -0.50485265 -1.50926399]] >> >> doubled with kernel: >> >> [[-3.71031022 -1.22775805 -1.881899 1.14830923] >> >> [ 4.09451103 -0.87172073 2.38510823 -0.9231301 ] >> >> [-1.66602623 1.53436995 -1.07156408 0.33589211] >> >> [-2.48564053 -0.50120842 -1.00970531 -3.01852798]] >> >> cuFuncSetBlockShape (doublify) >> >> cuMemAlloc >> >> cuParamSetv (doublify) >> >> cuParamSetSize (doublify) >> >> cuMemcpyHtoD >> >> cuLaunchGrid (doublify) >> >> cuCtxSynchronize >> >> cuMemcpyDtoH >> >> cuMemFree >> >> doubled with InOut: >> >> [[-3.71031022 -1.22775805 -1.881899 1.14830923] >> >> [ 4.09451103 -0.87172073 2.38510823 -0.9231301 ] >> >> [-1.66602623 1.53436995 -1.07156408 0.33589211] >> >> [-2.48564053 -0.50120842 -1.00970531 -3.01852798]] >> >> cuMemAlloc >> >> cuCtxGetDevice >> >> cuDeviceGetAttribute >> >> cuDeviceGetAttribute >> >> cuDeviceComputeCapability >> >> cuDeviceGetAttribute >> >> cuDeviceGetAttribute >> >> cuDeviceComputeCapability >> >> cuDeviceComputeCapability >> >> cuDeviceGetAttribute >> >> cuMemcpyHtoD >> >> cuMemFree >> >> cuMemAlloc >> >> cuCtxGetDevice >> >> cuCtxGetDevice >> >> cuDeviceComputeCapability >> >> cuModuleLoadDataEx >> >> cuModuleGetFunction >> >> cuFuncSetBlockShape (axpb) >> >> cuParamSetSize (axpb) >> >> cuFuncSetBlockShape (axpb) >> >> cuParamSetv (axpb) >> >> cuLaunchGrid (axpb) >> >> cuMemcpyDtoH >> >> cuMemFree >> >> original array: >> >> cuMemcpyDtoH >> >> [[-0.48802722 0.91386962 -0.81973875 0.19833829] >> >> [ 0.51856601 -0.09402688 -0.48339829 1.20150411] >> >> [-1.65700185 2.41741824 0.0643658 0.15416692] >> >> [ 0.3448593 1.04530859 0.03367852 1.69314694]] >> >> doubled with gpuarray: >> >> [[-0.97605443 1.82773924 -1.63947749 0.39667657] >> >> [ 1.03713202 -0.18805376 -0.96679658 2.40300822] >> >> [-3.31400371 4.83483648 0.12873159 0.30833384] >> >> [ 0.6897186 2.09061718 0.06735703 3.38629389]] >> >> cuCtxPopCurrent >> >> cuCtxPushCurrent >> >> cuModuleUnload >> >> cuCtxPopCurrent >> >> cuCtxPushCurrent >> >> cuMemFree >> >> cuCtxPopCurrent >> >> cuCtxPushCurrent >> >> cuModuleUnload >> >> cuCtxPopCurrent >> >> cuCtxPushCurrent >> >> cuCtxDetach >> >> >> >> _______________________________________________ >> PyCUDA mailing list >> PyCUDA@tiker.net >> http://lists.tiker.net/listinfo/pycuda > > _______________________________________________ > PyCUDA mailing list > PyCUDA@tiker.net > http://lists.tiker.net/listinfo/pycuda > > _______________________________________________ > PyCUDA mailing list > PyCUDA@tiker.net > http://lists.tiker.net/listinfo/pycuda > _______________________________________________ PyCUDA mailing list PyCUDA@tiker.net http://lists.tiker.net/listinfo/pycuda