So I have a process that use PyPy and pymongo in a loop. It does basically the same thing every loop, which query a table in via pymongo and do a few non-save calculations and then wait and loop again
The RSS of the process continually increased (the PYPY_GC_MAX is set pretty high). So I hooked in the GC stats output per: http://doc.pypy.org/en/latest/gc_info.html I also assure that gc.collect() was called at least every 3 minutes. What I see is that... The memory while high is fair constant for a long time: 2019-03-27 00:04:10.033-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 144244736 ... 2019-03-27 01:01:46.841-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 144420864 2019-03-27 01:02:36.943-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 144269312 Then it decides (an the exact per-loop behavior is the same each time) to chew up much more memory: 2019-03-27 01:04:17.184-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 145469440 2019-03-27 01:05:07.305-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 158175232 2019-03-27 01:05:57.401-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 173191168 2019-03-27 01:06:47.490-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 196943872 2019-03-27 01:07:37.575-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 205406208 2019-03-27 01:08:27.659-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 254562304 2019-03-27 01:09:17.770-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 256020480 2019-03-27 01:10:07.866-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 289779712 That's 140 MB .... Where is all that memory going... What's more is that the PyPy GC stats do not show anything different: Here are the GC stats from GC-Complete when we were at *144MB*: 2019-03-26 23:55:49.127-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 140632064 2019-03-26 23:55:49.133-0600 [-] main_thread(29621)log (async_worker_process.py:308): DBG0: Total memory consumed: GC used: 56.8MB (peak: 69.6MB) in arenas: 39.3MB rawmalloced: 14.5MB nursery: 3.0MB raw assembler used: 521.6kB ----------------------------- Total: 57.4MB Total memory allocated: GC allocated: 63.0MB (peak: 71.2MB) in arenas: 43.9MB rawmalloced: 22.7MB nursery: 3.0MB raw assembler allocated: 1.0MB ----------------------------- Total: 64.0MB Here are the GC stats from GC-Complete when we are at *285MB*: 2019-03-27 01:42:41.751-0600 [-] main_thread(29621)log (async_worker_process.py:304): INFO_FLUSH: RSS: 285147136 2019-03-27 01:42:41.751-0600 [-] main_thread(29621)log (async_worker_process.py:308): DBG0: Total memory consumed: GC used: 57.5MB (peak: 69.6MB) in arenas: 39.9MB rawmalloced: 14.6MB nursery: 3.0MB raw assembler used: 1.5MB ----------------------------- Total: 58.9MB Total memory allocated: GC allocated: 63.1MB (peak: 71.2MB) in arenas: 43.9MB rawmalloced: 22.7MB nursery: 3.0MB raw assembler allocated: 2.0MB ----------------------------- Total: 65.1MB How is this possible? I am measuring RSS with: def get_rss_mem_usage(): ''' Get the RSS memory usage in bytes @return: memory size in bytes; -1 if error occurs ''' try: process = psutil.Process(os.getpid()) return process.get_memory_info().rss except: return -1 And cross referencing with "ps -orss -p <pid>" and the RSS values reported are correct.... I cannot figure out where to go from here with this as it appears that PyPy is leaking this memory somehow... And I have no idea howto proceed from here... I end up having memory problems and getting Memory Warnings for a process that just loops and queries via pymongo Pymongo version is 3.7.1 This is: Python 2.7.13 (ab0b9caf307db6592905a80b8faffd69b39005b8, Apr 30 2018, 08:21:35) [PyPy 6.0.0 with GCC 7.2.0]
_______________________________________________ pypy-dev mailing list pypy-dev@python.org https://mail.python.org/mailman/listinfo/pypy-dev