Hi, This is a third iteration of the PEP.
There was some really good feedback on python-ideas and the discussion thread became hard to follow again, so I decided to update the PEP only three days after I published the previous version. Summary of the changes can be found in the "Version History" section: https://www.python.org/dev/peps/pep-0550/#version-history There are a few open questions left, namely the terminology and design of ContextKey API. On the former topic, I'm quite happy with the latest version: Execution Context, Logical Context, and Context Key. Thank you, Yury PEP: 550 Title: Execution Context Version: $Revision$ Last-Modified: $Date$ Author: Yury Selivanov <y...@magic.io> Status: Draft Type: Standards Track Content-Type: text/x-rst Created: 11-Aug-2017 Python-Version: 3.7 Post-History: 11-Aug-2017, 15-Aug-2017, 18-Aug-2017 Abstract ======== This PEP proposes a new mechanism to manage execution state--the logical environment in which a function, a thread, a generator, or a coroutine executes in. A few examples of where having a reliable state storage is required: * Context managers like decimal contexts, ``numpy.errstate``, and ``warnings.catch_warnings``; * Storing request-related data such as security tokens and request data in web applications, implementing i18n; * Profiling, tracing, and logging in complex and large code bases. The usual solution for storing state is to use a Thread-local Storage (TLS), implemented in the standard library as ``threading.local()``. Unfortunately, TLS does not work for the purpose of state isolation for generators or asynchronous code, because such code executes concurrently in a single thread. Rationale ========= Traditionally, a Thread-local Storage (TLS) is used for storing the state. However, the major flaw of using the TLS is that it works only for multi-threaded code. It is not possible to reliably contain the state within a generator or a coroutine. For example, consider the following generator:: def calculate(precision, ...): with decimal.localcontext() as ctx: # Set the precision for decimal calculations # inside this block ctx.prec = precision yield calculate_something() yield calculate_something_else() Decimal context is using a TLS to store the state, and because TLS is not aware of generators, the state can leak. If a user iterates over the ``calculate()`` generator with different precisions one by one using a ``zip()`` built-in, the above code will not work correctly. For example:: g1 = calculate(precision=100) g2 = calculate(precision=50) items = list(zip(g1, g2)) # items[0] will be a tuple of: # first value from g1 calculated with 100 precision, # first value from g2 calculated with 50 precision. # # items[1] will be a tuple of: # second value from g1 calculated with 50 precision (!!!), # second value from g2 calculated with 50 precision. An even scarier example would be using decimals to represent money in an async/await application: decimal calculations can suddenly lose precision in the middle of processing a request. Currently, bugs like this are extremely hard to find and fix. Another common need for web applications is to have access to the current request object, or security context, or, simply, the request URL for logging or submitting performance tracing data:: async def handle_http_request(request): context.current_http_request = request await ... # Invoke your framework code, render templates, # make DB queries, etc, and use the global # 'current_http_request' in that code. # This isn't currently possible to do reliably # in asyncio out of the box. These examples are just a few out of many, where a reliable way to store context data is absolutely needed. The inability to use TLS for asynchronous code has lead to proliferation of ad-hoc solutions, which are limited in scope and do not support all required use cases. Current status quo is that any library, including the standard library, that uses a TLS, will likely not work as expected in asynchronous code or with generators (see [3]_ as an example issue.) Some languages that have coroutines or generators recommend to manually pass a ``context`` object to every function, see [1]_ describing the pattern for Go. This approach, however, has limited use for Python, where we have a huge ecosystem that was built to work with a TLS-like context. Moreover, passing the context explicitly does not work at all for libraries like ``decimal`` or ``numpy``, which use operator overloading. .NET runtime, which has support for async/await, has a generic solution of this problem, called ``ExecutionContext`` (see [2]_). On the surface, working with it is very similar to working with a TLS, but the former explicitly supports asynchronous code. Goals ===== The goal of this PEP is to provide a more reliable alternative to ``threading.local()``. It should be explicitly designed to work with Python execution model, equally supporting threads, generators, and coroutines. An acceptable solution for Python should meet the following requirements: * Transparent support for code executing in threads, coroutines, and generators with an easy to use API. * Negligible impact on the performance of the existing code or the code that will be using the new mechanism. * Fast C API for packages like ``decimal`` and ``numpy``. Explicit is still better than implicit, hence the new APIs should only be used when there is no acceptable way of passing the state explicitly. Specification ============= Execution Context is a mechanism of storing and accessing data specific to a logical thread of execution. We consider OS threads, generators, and chains of coroutines (such as ``asyncio.Task``) to be variants of a logical thread. In this specification, we will use the following terminology: * **Logical Context**, or LC, is a key/value mapping that stores the context of a logical thread. * **Execution Context**, or EC, is an OS-thread-specific dynamic stack of Logical Contexts. * **Context Key**, or CK, is an object used to set and get values from the Execution Context. Please note that throughout the specification we use simple pseudo-code to illustrate how the EC machinery works. The actual algorithms and data structures that we will use to implement the PEP are discussed in the `Implementation Strategy`_ section. Context Key Object ------------------ The ``sys.new_context_key(name)`` function creates a new ``ContextKey`` object. The ``name`` parameter is a ``str`` needed to render a representation of ``ContextKey`` object for introspection and debugging purposes. ``ContextKey`` objects have the following methods and attributes: * ``.name``: read-only name; * ``.set(o)`` method: set the value to ``o`` for the context key in the execution context. * ``.get()`` method: return the current EC value for the context key. Context keys return ``None`` when the key is missing, so the method never fails. The below is an example of how context keys can be used:: my_context = sys.new_context_key('my_context') my_context.set('spam') # Later, to access the value of my_context: print(my_context.get()) Thread State and Multi-threaded code ------------------------------------ Execution Context is implemented on top of Thread-local Storage. For every thread there is a separate stack of Logical Contexts -- mappings of ``ContextKey`` objects to their values in the LC. New threads always start with an empty EC. For CPython:: PyThreadState: execution_context: ExecutionContext([ LogicalContext({ci1: val1, ci2: val2, ...}), ... ]) The ``ContextKey.get()`` and ``.set()`` methods are defined as follows (in pseudo-code):: class ContextKey: def get(self): tstate = PyThreadState_Get() for logical_context in reversed(tstate.execution_context): if self in logical_context: return logical_context[self] return None def set(self, value): tstate = PyThreadState_Get() if not tstate.execution_context: tstate.execution_context = [LogicalContext()] tstate.execution_context[-1][self] = value With the semantics defined so far, the Execution Context can already be used as an alternative to ``threading.local()``:: def print_foo(): print(ci.get() or 'nothing') ci = sys.new_context_key('ci') ci.set('foo') # Will print "foo": print_foo() # Will print "nothing": threading.Thread(target=print_foo).start() Manual Context Management ------------------------- Execution Context is generally managed by the Python interpreter, but sometimes it is desirable for the user to take the control over it. A few examples when this is needed: * running a computation in ``concurrent.futures.ThreadPoolExecutor`` with the current EC; * reimplementing generators with iterators (more on that later); * managing contexts in asynchronous frameworks (implement proper EC support in ``asyncio.Task`` and ``asyncio.loop.call_soon``.) For these purposes we add a set of new APIs (they will be used in later sections of this specification): * ``sys.new_logical_context()``: create an empty ``LogicalContext`` object. * ``sys.new_execution_context()``: create an empty ``ExecutionContext`` object. * Both ``LogicalContext`` and ``ExecutionContext`` objects are opaque to Python code, and there are no APIs to modify them. * ``sys.get_execution_context()`` function. The function returns a copy of the current EC: an ``ExecutionContext`` instance. The runtime complexity of the actual implementation of this function can be O(1), but for the purposes of this section it is equivalent to:: def get_execution_context(): tstate = PyThreadState_Get() return copy(tstate.execution_context) * ``sys.run_with_execution_context(ec: ExecutionContext, func, *args, **kwargs)`` runs ``func(*args, **kwargs)`` in the provided execution context:: def run_with_execution_context(ec, func, *args, **kwargs): tstate = PyThreadState_Get() old_ec = tstate.execution_context tstate.execution_context = ExecutionContext( ec.logical_contexts + [LogicalContext()] ) try: return func(*args, **kwargs) finally: tstate.execution_context = old_ec Any changes to Logical Context by ``func`` will be ignored. This allows to reuse one ``ExecutionContext`` object for multiple invocations of different functions, without them being able to affect each other's environment:: ci = sys.new_context_key('ci') ci.set('spam') def func(): print(ci.get()) ci.set('ham') ec = sys.get_execution_context() sys.run_with_execution_context(ec, func) sys.run_with_execution_context(ec, func) # Will print: # spam # spam * ``sys.run_with_logical_context(lc: LogicalContext, func, *args, **kwargs)`` runs ``func(*args, **kwargs)`` in the current execution context using the specified logical context. Any changes that ``func`` does to the logical context will be persisted in ``lc``. This behaviour is different from the ``run_with_execution_context()`` function, which always creates a new throw-away logical context. In pseudo-code:: def run_with_logical_context(lc, func, *args, **kwargs): tstate = PyThreadState_Get() old_ec = tstate.execution_context tstate.execution_context = ExecutionContext( old_ec.logical_contexts + [lc] ) try: return func(*args, **kwargs) finally: tstate.execution_context = old_ec Using the previous example:: ci = sys.new_context_key('ci') ci.set('spam') def func(): print(ci.get()) ci.set('ham') ec = sys.get_execution_context() lc = sys.new_logical_context() sys.run_with_logical_context(lc, func) sys.run_with_logical_context(lc, func) # Will print: # spam # ham As an example, let's make a subclass of ``concurrent.futures.ThreadPoolExecutor`` that preserves the execution context for scheduled functions:: class Executor(concurrent.futures.ThreadPoolExecutor): def submit(self, fn, *args, **kwargs): context = sys.get_execution_context() fn = functools.partial( sys.run_with_execution_context, context, fn, *args, **kwargs) return super().submit(fn) Generators ---------- Generators in Python are producers of data, and ``yield`` expressions are used to suspend/resume their execution. When generators suspend execution, their local state will "leak" to the outside code if they store it in a TLS or in a global variable:: local = threading.local() def gen(): old_x = local.x local.x = 'spam' try: yield ... yield finally: local.x = old_x The above code will not work as many Python users expect it to work. A simple ``next(gen())`` will set ``local.x`` to "spam" and it will never be reset back to its original value. One of the goals of this proposal is to provide a mechanism to isolate local state in generators. Generator Object Modifications ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ To achieve this, we make a small set of modifications to the generator object: * New ``__logical_context__`` attribute. This attribute is readable and writable for Python code. * When a generator object is instantiated its ``__logical_context__`` is initialized with an empty ``LogicalContext``. * Generator's ``.send()`` and ``.throw()`` methods are modified as follows (in pseudo-C):: if gen.__logical_context__ is not NULL: tstate = PyThreadState_Get() tstate.execution_context.push(gen.__logical_context__) try: # Perform the actual `Generator.send()` or # `Generator.throw()` call. return gen.send(...) finally: gen.__logical_context__ = tstate.execution_context.pop() else: # Perform the actual `Generator.send()` or # `Generator.throw()` call. return gen.send(...) If a generator has a non-NULL ``__logical_context__``, it will be pushed to the EC and, therefore, generators will use it to accumulate their local state. If a generator has no ``__logical_context__``, generators will will use whatever LC they are being run in. EC Semantics for Generators ^^^^^^^^^^^^^^^^^^^^^^^^^^^ Every generator object has its own Logical Context that stores only its own local modifications of the context. When a generator is being iterated, its logical context will be put in the EC stack of the current thread. This means that the generator will be able to access keys from the surrounding context:: local = sys.new_context_key("local") global = sys.new_context_key("global") def generator(): local.set('inside gen:') while True: print(local.get(), global.get()) yield g = gen() local.set('hello') global.set('spam') next(g) local.set('world') global.set('ham') next(g) # Will print: # inside gen: spam # inside gen: ham Any changes to the EC in nested generators are invisible to the outer generator:: local = sys.new_context_key("local") def inner_gen(): local.set('spam') yield def outer_gen(): local.set('ham') yield from gen() print(local.get()) list(outer_gen()) # Will print: # ham Running generators without LC ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If ``__logical_context__`` is set to ``None`` for a generator, it will simply use the outer Logical Context. The ``@contextlib.contextmanager`` decorator uses this mechanism to allow its generator to affect the EC:: item = sys.new_context_key('item') @contextmanager def context(x): old = item.get() item.set('x') try: yield finally: item.set(old) with context('spam'): with context('ham'): print(1, item.get()) print(2, item.get()) # Will print: # 1 ham # 2 spam Implementing Generators with Iterators ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The Execution Context API allows to fully replicate EC behaviour imposed on generators with a regular Python iterator class:: class Gen: def __init__(self): self.logical_context = sys.new_logical_context() def __iter__(self): return self def __next__(self): return sys.run_with_logical_context( self.logical_context, self._next_impl) def _next_impl(self): # Actual __next__ implementation. ... yield from in generator-based coroutines ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Prior to :pep:`492`, ``yield from`` was used as one of the mechanisms to implement coroutines in Python. :pep:`492` is built on top of ``yield from`` machinery, and it is even possible to make a generator compatible with async/await code by decorating it with ``@types.coroutine`` (or ``@asyncio.coroutine``). Generators decorated with these decorators follow the Execution Context semantics described below in the `EC Semantics for Coroutines`_ section below. yield from in generators ^^^^^^^^^^^^^^^^^^^^^^^^ Another ``yield from`` use is to compose generators. Essentially, ``yield from gen()`` is a better version of ``for v in gen(): yield v`` (read more about many subtle details in :pep:`380`.) A crucial difference between ``await coro`` and ``yield value`` is that the former expression guarantees that the ``coro`` will be executed fully, while the latter is producing ``value`` and suspending the generator until it gets iterated again. Therefore, this proposal does not special case ``yield from`` expression for regular generators:: item = sys.new_context_key('item') def nested(): assert item.get() == 'outer' item.set('inner') yield def outer(): item.set('outer') yield from nested() assert item.get() == 'outer' EC Semantics for Coroutines --------------------------- Python :pep:`492` coroutines are used to implement cooperative multitasking. For a Python end-user they are similar to threads, especially when it comes to sharing resources or modifying the global state. An event loop is needed to schedule coroutines. Coroutines that are explicitly scheduled by the user are usually called Tasks. When a coroutine is scheduled, it can schedule other coroutines using an ``await`` expression. In async/await world, awaiting a coroutine is equivalent to a regular function call in synchronous code. Thus, Tasks are similar to threads. By drawing a parallel between regular multithreaded code and async/await, it becomes apparent that any modification of the execution context within one Task should be visible to all coroutines scheduled within it. Any execution context modifications, however, must not be visible to other Tasks executing within the same OS thread. Similar to generators, coroutines have the new ``__logical_context__`` attribute and same implementations of ``.send()`` and ``.throw()`` methods. The key difference is that coroutines start with ``__logical_context__`` set to ``NULL`` (generators start with an empty ``LogicalContext``.) This means that it is expected that the asynchronous library and its Task abstraction will control how exactly coroutines interact with Execution Context. Tasks ^^^^^ In asynchronous frameworks like asyncio, coroutines are run by an event loop, and need to be explicitly scheduled (in asyncio coroutines are run by ``asyncio.Task``.) To enable correct Execution Context propagation into Tasks, the asynchronous framework needs to assist the interpreter: * When ``create_task`` is called, it should capture the current execution context with ``sys.get_execution_context()`` and save it on the Task object. * The ``__logical_context__`` of the wrapped coroutine should be initialized to a new empty logical context. * When the Task object runs its coroutine object, it should execute ``.send()`` and ``.throw()`` methods within the captured execution context, using the ``sys.run_with_execution_context()`` function. For ``asyncio.Task``:: class Task: def __init__(self, coro): ... self.exec_context = sys.get_execution_context() coro.__logical_context__ = sys.new_logical_context() def _step(self, val): ... sys.run_with_execution_context( self.exec_context, self.coro.send, val) ... This makes any changes to execution context made by nested coroutine calls within a Task to be visible throughout the Task:: ci = sys.new_context_key('ci') async def nested(): ci.set('nested') async def main(): ci.set('main') print('before:', ci.get()) await nested() print('after:', ci.get()) asyncio.get_event_loop().run_until_complete(main()) # Will print: # before: main # after: nested New Tasks, started within another Task, will run in the correct execution context too:: current_request = sys.new_context_key('current_request') async def child(): print('current request:', repr(current_request.get())) async def handle_request(request): current_request.set(request) event_loop.create_task(child) run(top_coro()) # Will print: # current_request: None The above snippet will run correctly, and the ``child()`` coroutine will be able to access the current request object through the ``current_request`` Context Key. Any of the above examples would work if one the coroutines was a generator decorated with ``@asyncio.coroutine``. Event Loop Callbacks ^^^^^^^^^^^^^^^^^^^^ Similarly to Tasks, functions like asyncio's ``loop.call_soon()`` should capture the current execution context with ``sys.get_execution_context()`` and execute callbacks within it with ``sys.run_with_execution_context()``. This way the following code will work:: current_request = sys.new_context_key('current_request') def log(): request = current_request.get() print(request) async def request_handler(request): current_request.set(request) get_event_loop.call_soon(log) Asynchronous Generators ----------------------- Asynchronous Generators (AG) interact with the Execution Context similarly to regular generators. They have an ``__logical_context__`` attribute, which, similarly to regular generators, can be set to ``None`` to make them use the outer Logical Context. This is used by the new ``contextlib.asynccontextmanager`` decorator. Greenlets --------- Greenlet is an alternative implementation of cooperative scheduling for Python. Although greenlet package is not part of CPython, popular frameworks like gevent rely on it, and it is important that greenlet can be modified to support execution contexts. In a nutshell, greenlet design is very similar to design of generators. The main difference is that for generators, the stack is managed by the Python interpreter. Greenlet works outside of the Python interpreter, and manually saves some ``PyThreadState`` fields and pushes/pops the C-stack. Thus the ``greenlet`` package can be easily updated to use the new low-level `C API`_ to enable full support of EC. New APIs ======== Python ------ Python APIs were designed to completely hide the internal implementation details, but at the same time provide enough control over EC and LC to re-implement all of Python built-in objects in pure Python. 1. ``sys.new_context_key(name: str='...')``: create a ``ContextKey`` object used to access/set values in EC. 2. ``ContextKey``: * ``.name``: read-only attribute. * ``.get()``: return the current value for the key. * ``.set(o)``: set the current value in the EC for the key. 3. ``sys.get_execution_context()``: return the current ``ExecutionContext``. 4. ``sys.new_execution_context()``: create a new empty ``ExecutionContext``. 5. ``sys.new_logical_context()``: create a new empty ``LogicalContext``. 6. ``sys.run_with_execution_context(ec: ExecutionContext, func, *args, **kwargs)``. 7. ``sys.run_with_logical_context(lc:LogicalContext, func, *args, **kwargs)``. C API ----- 1. ``PyContextKey * PyContext_NewKey(char *desc)``: create a ``PyContextKey`` object. 2. ``PyObject * PyContext_GetKey(PyContextKey *)``: get the current value for the context key. 3. ``int PyContext_SetKey(PyContextKey *, PyObject *)``: set the current value for the context key. 4. ``PyLogicalContext * PyLogicalContext_New()``: create a new empty ``PyLogicalContext``. 5. ``PyLogicalContext * PyExecutionContext_New()``: create a new empty ``PyExecutionContext``. 6. ``PyExecutionContext * PyExecutionContext_Get()``: get the EC for the active thread state. 7. ``int PyExecutionContext_Set(PyExecutionContext *)``: set the passed EC object as the current for the active thread state. 8. ``int PyExecutionContext_SetWithLogicalContext(PyExecutionContext *, PyLogicalContext *)``: allows to implement ``sys.run_with_logical_context`` Python API. Implementation Strategy ======================= LogicalContext is a Weak Key Mapping ------------------------------------ Using a weak key mapping for ``LogicalContext`` implementation enables the following properties with regards to garbage collection: * ``ContextKey`` objects are strongly-referenced only from the application code, not from any of the Execution Context machinery or values they point to. This means that there are no reference cycles that could extend their lifespan longer than necessary, or prevent their garbage collection. * Values put in the Execution Context are guaranteed to be kept alive while there is a ``ContextKey`` key referencing them in the thread. * If a ``ContextKey`` is garbage collected, all of its values will be removed from all contexts, allowing them to be GCed if needed. * If a thread has ended its execution, its thread state will be cleaned up along with its ``ExecutionContext``, cleaning up all values bound to all Context Keys in the thread. ContextKey.get() Cache ---------------------- We can add three new fields to ``PyThreadState`` and ``PyInterpreterState`` structs: * ``uint64_t PyThreadState->unique_id``: a globally unique thread state identifier (we can add a counter to ``PyInterpreterState`` and increment it when a new thread state is created.) * ``uint64_t ContextKey->version``: every time the key is updated in any logical context or thread, this key will be incremented. The above two fields allow implementing a fast cache path in ``ContextKey.get()``, in pseudo-code:: class ContextKey: def set(self, value): ... # implementation self.version += 1 def get(self): tstate = PyThreadState_Get() if (self.last_tstate_id == tstate.unique_id and self.last_version == self.version): return self.last_value value = None for mapping in reversed(tstate.execution_context): if self in mapping: value = mapping[self] break self.last_value = value # borrowed ref self.last_tstate_id = tstate.unique_id self.last_version = self.version return value Note that ``last_value`` is a borrowed reference. The assumption is that if current thread and key version tests are OK, the object will be alive. This allows the CK values to be properly GCed. This is similar to the trick that decimal C implementation uses for caching the current decimal context, and will have the same performance characteristics, but available to all Execution Context users. Approach #1: Use a dict for LogicalContext ------------------------------------------ The straightforward way of implementing the proposed EC mechanisms is to create a ``WeakKeyDict`` on top of Python ``dict`` type. To implement the ``ExecutionContext`` type we can use Python ``list`` (or a custom stack implementation with some pre-allocation optimizations). This approach will have the following runtime complexity: * O(M) for ``ContextKey.get()``, where ``M`` is the number of Logical Contexts in the stack. It is important to note that ``ContextKey.get()`` will implement a cache making the operation O(1) for packages like ``decimal`` and ``numpy``. * O(1) for ``ContextKey.set()``. * O(N) for ``sys.get_execution_context()``, where ``N`` is the total number of keys/values in the current **execution** context. Approach #2: Use HAMT for LogicalContext ---------------------------------------- Languages like Clojure and Scala use Hash Array Mapped Tries (HAMT) to implement high performance immutable collections [5]_, [6]_. Immutable mappings implemented with HAMT have O(log\ :sub:`32`\ N) performance for both ``set()``, ``get()``, and ``merge()`` operations, which is essentially O(1) for relatively small mappings (read about HAMT performance in CPython in the `Appendix: HAMT Performance`_ section.) In this approach we use the same design of the ``ExecutionContext`` as in Approach #1, but we will use HAMT backed weak key Logical Context implementation. With that we will have the following runtime complexity: * O(M * log\ :sub:`32`\ N) for ``ContextKey.get()``, where ``M`` is the number of Logical Contexts in the stack, and ``N`` is the number of keys/values in the EC. The operation will essentially be O(M), because execution contexts are normally not expected to have more than a few dozen of keys/values. (``ContextKey.get()`` will have the same caching mechanism as in Approach #1.) * O(log\ :sub:`32`\ N) for ``ContextKey.set()`` where ``N`` is the number of keys/values in the current **logical** context. This will essentially be an O(1) operation most of the time. * O(log\ :sub:`32`\ N) for ``sys.get_execution_context()``, where ``N`` is the total number of keys/values in the current **execution** context. Essentially, using HAMT for Logical Contexts instead of Python dicts, allows to bring down the complexity of ``sys.get_execution_context()`` from O(N) to O(log\ :sub:`32`\ N) because of the more efficient merge algorithm. Approach #3: Use HAMT and Immutable Linked List ----------------------------------------------- We can make an alternative ``ExecutionContext`` design by using a linked list. Each ``LogicalContext`` in the ``ExecutionContext`` object will be wrapped in a linked-list node. ``LogicalContext`` objects will use an HAMT backed weak key implementation described in the Approach #2. Every modification to the current ``LogicalContext`` will produce a new version of it, which will be wrapped in a **new linked list node**. Essentially this means, that ``ExecutionContext`` is an immutable forest of ``LogicalContext`` objects, and can be safely copied by reference in ``sys.get_execution_context()`` (eliminating the expensive "merge" operation.) With this approach, ``sys.get_execution_context()`` will be a constant time **O(1) operation**. In case we decide to apply additional optimizations such as flattening ECs with too many Logical Contexts, HAMT-backed immutable mapping will have a O(log\ :sub:`32`\ N) merge complexity. Summary ------- We believe that approach #3 enables an efficient and complete Execution Context implementation, with excellent runtime performance. `ContextKey.get() Cache`_ enables fast retrieval of context keys for performance critical libraries like decimal and numpy. Fast ``sys.get_execution_context()`` enables efficient management of execution contexts in asynchronous libraries like asyncio. Design Considerations ===================== Can we fix ``PyThreadState_GetDict()``? --------------------------------------- ``PyThreadState_GetDict`` is a TLS, and some of its existing users might depend on it being just a TLS. Changing its behaviour to follow the Execution Context semantics would break backwards compatibility. PEP 521 ------- :pep:`521` proposes an alternative solution to the problem: enhance Context Manager Protocol with two new methods: ``__suspend__`` and ``__resume__``. To make it compatible with async/await, the Asynchronous Context Manager Protocol will also need to be extended with ``__asuspend__`` and ``__aresume__``. This allows to implement context managers like decimal context and ``numpy.errstate`` for generators and coroutines. The following code:: class Context: def __init__(self): self.key = new_context_key('key') def __enter__(self): self.old_x = self.key.get() self.key.set('something') def __exit__(self, *err): self.key.set(self.old_x) would become this:: local = threading.local() class Context: def __enter__(self): self.old_x = getattr(local, 'x', None) local.x = 'something' def __suspend__(self): local.x = self.old_x def __resume__(self): local.x = 'something' def __exit__(self, *err): local.x = self.old_x Besides complicating the protocol, the implementation will likely negatively impact performance of coroutines, generators, and any code that uses context managers, and will notably complicate the interpreter implementation. :pep:`521` also does not provide any mechanism to propagate state in a logical context, like storing a request object in an HTTP request handler to have better logging. Nor does it solve the leaking state problem for greenlet/gevent. Can Execution Context be implemented outside of CPython? -------------------------------------------------------- Because async/await code needs an event loop to run it, an EC-like solution can be implemented in a limited way for coroutines. Generators, on the other hand, do not have an event loop or trampoline, making it impossible to intercept their ``yield`` points outside of the Python interpreter. Should we update sys.displayhook and other APIs to use EC? ---------------------------------------------------------- APIs like redirecting stdout by overwriting ``sys.stdout``, or specifying new exception display hooks by overwriting the ``sys.displayhook`` function are affecting the whole Python process **by design**. Their users assume that the effect of changing them will be visible across OS threads. Therefore we cannot just make these APIs to use the new Execution Context. That said we think it is possible to design new APIs that will be context aware, but that is outside of the scope of this PEP. Backwards Compatibility ======================= This proposal preserves 100% backwards compatibility. Appendix: HAMT Performance ========================== While investigating possibilities of how to implement an immutable mapping in CPython, we were able to improve the efficiency of ``dict.copy()`` up to 5 times: [4]_. One caveat is that the improved ``dict.copy()`` does not resize the dict, which is a necessary thing to do when items get deleted from the dict. Which means that we can make ``dict.copy()`` faster for only dicts that don't need to be resized, and the ones that do, will use a slower version. To assess if HAMT can be used for Execution Context, we implemented it in CPython [7]_. .. figure:: pep-0550-hamt_vs_dict.png :align: center :width: 100% Figure 1. Benchmark code can be found here: [9]_. The chart illustrates the following: * HAMT displays near O(1) performance for all benchmarked dictionary sizes. * If we can use the optimized ``dict.copy()`` implementation ([4]_), the performance of immutable mapping implemented with Python ``dict`` is good up until 100 items. * A dict with an unoptimized ``dict.copy()`` becomes very slow around 100 items. .. figure:: pep-0550-lookup_hamt.png :align: center :width: 100% Figure 2. Benchmark code can be found here: [10]_. Figure 2 shows comparison of lookup costs between Python dict and an HAMT immutable mapping. HAMT lookup time is 30-40% worse than Python dict lookups on average, which is a very good result, considering how well Python dicts are optimized. Note, that according to [8]_, HAMT design can be further improved. The bottom line is that it is possible to imagine a scenario when an application has more than 100 items in the Execution Context, in which case the dict-backed implementation of an immutable mapping becomes a subpar choice. HAMT on the other hand guarantees that its ``set()``, ``get()``, and ``merge()`` operations will execute in O(log\ :sub:`32`\ ) time, which means it is a more future proof solution. Acknowledgments =============== I thank Elvis Pranskevichus and Victor Petrovykh for countless discussions around the topic and PEP proof reading and edits. Thanks to Nathaniel Smith for proposing the ``ContextKey`` design [17]_ [18]_, for pushing the PEP towards a more complete design, and coming up with the idea of having a stack of contexts in the thread state. Thanks to Nick Coghlan for numerous suggestions and ideas on the mailing list, and for coming up with a case that cause the complete rewrite of the initial PEP version [19]_. Version History =============== 1. Posted on 11-Aug-2017, view it here: [20]_. 2. Posted on 15-Aug-2017, view it here: [21]_. The fundamental limitation that caused a complete redesign of the first version was that it was not possible to implement an iterator that would interact with the EC in the same way as generators (see [19]_.) Version 2 was a complete rewrite, introducing new terminology (Local Context, Execution Context, Context Item) and new APIs. 3. Posted on 18-Aug-2017: the current version. Updates: * Local Context was renamed to Logical Context. The term "local" was ambiguous and conflicted with local name scopes. * Context Item was renamed to Context Key, see the thread with Nick Coghlan, Stefan Krah, and Yury Selivanov [22]_ for details. * Context Item get cache design was adjusted, per Nathaniel Smith's idea in [24]_. * Coroutines are created without a Logical Context; ceval loop no longer needs to special case the ``await`` expression (proposed by Nick Coghlan in [23]_.) * `Appendix: HAMT Performance`_ section was updated with more details about the proposed ``dict.copy()`` optimization and its limitations. References ========== .. [1] https://blog.golang.org/context .. [2] https://msdn.microsoft.com/en-us/library/system.threading.executioncontext.aspx .. [3] https://github.com/numpy/numpy/issues/9444 .. [4] http://bugs.python.org/issue31179 .. [5] https://en.wikipedia.org/wiki/Hash_array_mapped_trie .. [6] http://blog.higher-order.net/2010/08/16/assoc-and-clojures-persistenthashmap-part-ii.html .. [7] https://github.com/1st1/cpython/tree/hamt .. [8] https://michael.steindorfer.name/publications/oopsla15.pdf .. [9] https://gist.github.com/1st1/9004813d5576c96529527d44c5457dcd .. [10] https://gist.github.com/1st1/dbe27f2e14c30cce6f0b5fddfc8c437e .. [11] https://github.com/1st1/cpython/tree/pep550 .. [12] https://www.python.org/dev/peps/pep-0492/#async-await .. [13] https://github.com/MagicStack/uvloop/blob/master/examples/bench/echoserver.py .. [14] https://github.com/MagicStack/pgbench .. [15] https://github.com/python/performance .. [16] https://gist.github.com/1st1/6b7a614643f91ead3edf37c4451a6b4c .. [17] https://mail.python.org/pipermail/python-ideas/2017-August/046752.html .. [18] https://mail.python.org/pipermail/python-ideas/2017-August/046772.html .. [19] https://mail.python.org/pipermail/python-ideas/2017-August/046775.html .. [20] https://github.com/python/peps/blob/e8a06c9a790f39451d9e99e203b13b3ad73a1d01/pep-0550.rst .. [21] https://github.com/python/peps/blob/e3aa3b2b4e4e9967d28a10827eed1e9e5960c175/pep-0550.rst .. [22] https://mail.python.org/pipermail/python-ideas/2017-August/046801.html .. [23] https://mail.python.org/pipermail/python-ideas/2017-August/046790.html .. [24] https://mail.python.org/pipermail/python-ideas/2017-August/046786.html Copyright ========= This document has been placed in the public domain. _______________________________________________ Python-Dev mailing list Python-Dev@python.org https://mail.python.org/mailman/listinfo/python-dev Unsubscribe: https://mail.python.org/mailman/options/python-dev/archive%40mail-archive.com