Chris Angelico wrote:

> On Thu, Feb 9, 2012 at 2:55 PM, Steven D'Aprano
> <steve+comp.lang.pyt...@pearwood.info> wrote:
>> If your data is humongous but only available lazily, buy more memory :)
> 
> Or if you have a huge iterable and only need a small index into it,
> snag those first few entries into a list, then yield everything else,
> then yield the saved ones:

> def cycle(seq,n):
>         seq=iter(seq)
>         lst=[next(seq) for i in range(n)]
>         try:
>                 while True: yield next(seq)
>         except StopIteration:
>                 for i in lst: yield i

I think that should be spelt

def cycle2(seq, n):
    seq = iter(seq)
    head = [next(seq) for i in range(n)]
    for item in seq:
        yield item
    for item in head:
        yield item

or, if you are into itertools,

def cycle3(seq, n):
    seq = iter(seq)
    return chain(seq, list(islice(seq, n)))

$ python -m timeit -s'from tmp import cycle; data = range(1000); start=10' 
'for item in cycle(data, 10): pass'
1000 loops, best of 3: 358 usec per loop
$ python -m timeit -s'from tmp import cycle2; data = range(1000); start=10' 
'for item in cycle2(data, 10): pass'
1000 loops, best of 3: 172 usec per loop
$ python -m timeit -s'from tmp import cycle3; data = range(1000); start=10' 
'for item in cycle3(data, 10): pass'
10000 loops, best of 3: 56.5 usec per loop

For reference:

$ python -m timeit -s'data = range(1000); start=10' 'for item in 
data[start:] + data[:start]: pass'
10000 loops, best of 3: 56.4 usec per loop


-- 
http://mail.python.org/mailman/listinfo/python-list

Reply via email to