Vincent Davis wrote: > For reference, Wikipedia entry for De Bruijn sequence > http://en.wikipedia.org/wiki/De_Bruijn_sequence > > At the above link is a python algorithm for generating De Brujin > sequences. It works fine but outputs a list of integers [0, 0, 0, 1, 0, 1, > 1, 1] and I would prefer a string '00010111'. This can be accomplished by > changing the last line from; > return sequence > to > return ''.join([str(i) for i in sequence]) > See de_bruijn_1 Below. > > The other option would be to manipulate strings directly (kind of). > I butchered the original algorithm to do this. See de_bruijn_2 below. But > it is much slower and ungly. > > I am wanting to make a few large De Bruijin sequences. hopefully on the > order of de_bruijn(4, 50) to de_bruijn(4, 100) (wishful thinking?). I > don't know the limits (memory or time) for the current algorithms. I think > I am will hit the memory mazsize limit at about 4^31. The system I will be > using has 64GB RAM. > The size of a De Brujin sequence is k^n > > My questions; > 1, de_bruijn_2 is ugly, any suggestions to do it better? > 2, de_bruijn_2 is significantly slower than de_bruijn_1. Speedups? > 3, Any thought on which is more memory efficient during computation. > > #### 1 #### > def de_bruijn_1(k, n): > """ > De Bruijn sequence for alphabet size k (0,1,2...k-1) > and subsequences of length n. > From wikipedia Sep 22 2013 > """ > a = [0] * k * n > sequence = [] > def db(t, p,): > if t > n: > if n % p == 0: > for j in range(1, p + 1): > sequence.append(a[j]) > else: > a[t] = a[t - p] > db(t + 1, p) > for j in range(int(a[t - p]) + 1, k): > a[t] = j > db(t + 1, t) > db(1, 1) > #return sequence #original > return ''.join([str(i) for i in sequence]) > > d1 = de_bruijn_1(4, 8) > > #### 2 #### > def de_bruijn_2(k, n): > global sequence > a = '0' * k * n > sequence = '' > def db(t, p): > global sequence > global a > if t > n: > if n % p == 0: > for j in range(1, p + 1): > sequence = sequence + a[j] > else: > a = a[:t] + a[t - p] + a[t+1:] > db(t + 1, p) > for j in range(int(a[t - p]) + 1, k): > a = a[:t] + str(j) + a[t+1:] > db(t + 1, t) > return sequence > db(1, 1) > return sequence > > d2 = de_bruijn_2(4, 8)
You could change de_bruijn_1() to use `bytearray`s instead of `list`s: # Python 2 def debruijn(k, n): a = k * n * bytearray([0]) sequence = bytearray() append = sequence.append # factor out method lookup def db(t, p,): if t > n: if n % p == 0: for j in xrange(1, p + 1): append(a[j]+48) # add 48 to convert to ascii else: a[t] = a[t - p] db(t + 1, p) for j in xrange(a[t - p] + 1, k): a[t] = j db(t + 1, t) db(1, 1) return sequence -- https://mail.python.org/mailman/listinfo/python-list