On 2016-04-04 01:04, Muhammad Ali wrote:
> On Sunday, April 3, 2016 at 2:35:58 PM UTC-7, Oscar Benjamin wrote:
>> On 3 Apr 2016 22:21, "Muhammad Ali" <muhammadaliask...@gmail.com> wrote:
>> >
>> > How do I convert/change/modify python script so that my data could be
>> extracted according to python script and at the end it generates another
>> single extracted data file instead of displaying/showing some graph? So
>> that, I can manually plot the newly generated file (after data extraction)
>> by some other software like origin.
>>
>> It depends what you're computing and what format origin expects the data to
>> be in. Presumably it can use CSV files so take a look at the CSV module
>> which can write these.
>>
>> (You'll get better answers to a question like this if you show us some code
>> and ask a specific question about how to change it.)
>>
>> --
>> Oscar
>
> How could the python script be modified to generate data file rather than
display a plot by using matplotlib?
>
>
> def make_plot(plot):
> indent = plot.plot_options.indent
> args = plot.plot_options.args
> # Creating the plot
> print ('Generating the plot...')
> fig = plt.figure(figsize=(plot.fig_width_inches,plot.fig_height_inches))
> ax = fig.add_subplot(111)
> # Defining the color schemes.
> print (indent + '>>> Using the "' + plot.cmap_name + '" colormap.')
> if(plot.plot_options.using_default_cmap and not args.running_from_GUI):
> print (2 * indent + 'Tip: You can try different colormaps by
either:')
> print (2 * indent + ' * Running the plot tool with the option
-icmap n, ' \
> 'with n in the range from 0 to', len(plot.plot_options.cmaps)
- 1)
> print (2 * indent + ' * Running the plot tool with the option "-cmap
cmap_name".')
> print (2 * indent + '> Take a look at')
> print (4 * indent +
'<http://matplotlib.org/examples/color/colormaps_reference.html>')
> print (2 * indent + ' for a list of colormaps, or run')
> print (4 * indent + '"./plot_unfolded_EBS_BandUP.py --help".')
>
> # Building the countour plot from the read data
> # Defining the (ki,Ej) grid.
> if(args.interpolation is not None):
> ki = np.linspace(plot.kmin, plot.kmax, 2 * len(set(plot.KptsCoords))
+ 1, endpoint=True)
> Ei = np.arange(plot.emin, plot.emax + plot.dE_for_hist2d,
plot.dE_for_hist2d)
> # Interpolating
> grid_freq = griddata((plot.KptsCoords, plot.energies),
plot.delta_Ns, (ki[None,:], Ei[:,None]),
> method=args.interpolation, fill_value=0.0)
> else:
> ki = np.unique(np.clip(plot.KptsCoords, plot.kmin, plot.kmax))
> Ei = np.unique(np.clip(plot.energies, plot.emin, plot.emax))
> grid_freq = griddata((plot.KptsCoords, plot.energies),
plot.delta_Ns, (ki[None,:], Ei[:,None]),
> method='nearest', fill_value=0.0)
>
> if(not args.skip_grid_freq_clip):
> grid_freq = grid_freq.clip(0.0) # Values smaller than zero are just
noise.
> # Normalizing and building the countour plot
> manually_normalize_colorbar_min_and_maxval = False
> if((args.maxval_for_colorbar is not None) or (args.minval_for_colorbar
is not None)):
> manually_normalize_colorbar_min_and_maxval = True
> args.disable_auto_round_vmin_and_vmax = True
> maxval_for_colorbar = args.maxval_for_colorbar
> minval_for_colorbar = args.minval_for_colorbar
> else:
> if not args.disable_auto_round_vmin_and_vmax:
> minval_for_colorbar = float(round(np.min(grid_freq)))
> maxval_for_colorbar = float(round(np.max(grid_freq)))
> args.round_cb = 0
> if(manually_normalize_colorbar_min_and_maxval or not
args.disable_auto_round_vmin_and_vmax):
> modified_vmin_or_vmax = False
> if not args.disable_auto_round_vmin_and_vmax and not
args.running_from_GUI:
> print (plot.indent + '* Automatically renormalizing color scale
'\
> '(you can disable this with the option
--disable_auto_round_vmin_and_vmax):')
> if manually_normalize_colorbar_min_and_maxval:
> print (plot.indent + '* Manually renormalizing color scale')
> if(minval_for_colorbar is not None):
> previous_vmin = np.min(grid_freq)
> if(abs(previous_vmin - minval_for_colorbar) >= 0.1):
> modified_vmin_or_vmax = True
> print (2 * indent + 'Previous vmin = %.1f, new vmin = %.1f'
% (previous_vmin,
>
minval_for_colorbar))
> else:
> minval_for_colorbar = np.min(grid_freq)
> if(maxval_for_colorbar is not None):
> previous_vmax = np.max(grid_freq)
> if(abs(previous_vmax - maxval_for_colorbar) >= 0.1):
> modified_vmin_or_vmax = True
> print (2 * indent + 'Previous vmax = %.1f, new vmax = %.1f'
% (previous_vmax,
>
maxval_for_colorbar))
> else:
> maxval_for_colorbar = np.max(grid_freq)
> if(modified_vmin_or_vmax):
> print (2 * indent + 'The previous vmin and vmax might be
slightly different from '
> 'the min and max delta_Ns '
> 'due to the interpolation scheme used for
the plot.')
> # values > vmax will be set to vmax, and #<vmin will be set to vmin
> grid_freq = grid_freq.clip(minval_for_colorbar, maxval_for_colorbar)
> v = np.linspace(minval_for_colorbar, maxval_for_colorbar,
args.n_levels, endpoint=True)
> else:
> v = np.linspace(np.min(grid_freq), np.max(grid_freq), args.n_levels,
endpoint=True)
> print (indent + '* Drawing contour plot...')
> print (2 * indent + '> Using %i color levels. Use the option
"--n_levels" to choose a different number.' %args.n_levels)
> image = ax.contourf(ki, Ei, grid_freq, levels=v, cmap=plot.cmap)
>
> plot_spin_proj_requested = args.plot_spin_perp or args.plot_spin_para or
args.plot_sigma_x or args.plot_sigma_y or args.plot_sigma_z
> if(plot_spin_proj_requested and plot.spin_projections is not None):
> print (indent + '* Drawing spin projection info')
> cmap_for_spin_plot = [plt.cm.bwr, plt.cm.RdBu, plt.cm.seismic_r][0]
>
> if(args.clip_spin is None):
> vmin_spin = np.min(plot.spin_projections)
> vmax_spin = np.max(plot.spin_projections)
> else:
> vmax_spin = abs(args.clip_spin)
> vmin_spin = -1.0 * abs(args.clip_spin)
> print (2 * indent + '* New maxval for spin: %.2f' % vmax_spin)
> print (2 * indent + '* New minval for spin: %.2f' % vmin_spin)
>
> spin_projections = np.clip(plot.spin_projections, vmin_spin,
vmax_spin)
> grid_freq_spin = griddata((plot.KptsCoords, plot.energies),
spin_projections, (ki[None,:], Ei[:,None]),
> method='nearest', fill_value=0.0)
>
> k_for_scatter = []
> E_for_scatter = []
> spin_projections_for_scatter = []
> for iener in range(len(Ei)):
> for ikpt in range(len(ki)):
> if(abs(grid_freq_spin[iener, ikpt]) > 1E-3):
> k_for_scatter.append(ki[ikpt])
> E_for_scatter.append(Ei[iener])
>
spin_projections_for_scatter.append(grid_freq_spin[iener, ikpt])
>
> if(spin_projections_for_scatter):
> if(args.spin_marker=='o'):
> image2 = ax.scatter(k_for_scatter, E_for_scatter, marker='o',
> s=[10.0 * abs(item) for item in
spin_projections_for_scatter],
> c=spin_projections_for_scatter,
cmap=cmap_for_spin_plot)
> else:
> image2 = ax.scatter(k_for_scatter, E_for_scatter, marker='_',
> s=[500.0 * (ki[1] - ki[0]) for item in
spin_projections_for_scatter],
> linewidth=[100.0 * plot.dE_for_hist2d *
(item ** 2) for item in spin_projections_for_scatter],
> c=spin_projections_for_scatter,
cmap=cmap_for_spin_plot)
> else:
> print (2 * indent + '* The abs values of the spin projections were
all < 1E-3.')
>
> #Preparing the plot
> ax.set_xlim(plot.kmin, plot.kmax)
> ax.set_ylim(plot.emin, plot.emax)
> ax.set_title(plot.title, fontsize=plot.title_size)
> ax.set_ylabel(plot.y_axis_label, fontsize=plot.yaxis_labels_size)
> plt.yticks(fontsize=plot.tick_marks_size)
>
> # Fermi energy line
> show_E_f = not args.no_ef
> if(show_E_f and plot.E_f >= plot.emin and plot.E_f <= plot.emax):
> E_f_line = plt.axhline(y=plot.E_f, c=plot.color_E_f_line(image),
linestyle=plot.line_style_E_f, lw=plot.line_width_E_f)
> # High symmetry points lines
> if(plot.pos_high_symm_points):
> x_tiks_positions = [kx for kx in plot.pos_high_symm_points if kx -
plot.kmax <= 1E-2 and kx >= plot.kmin]
> if(args.no_symm_labels):
> x_tiks_labels = []
> else:
> x_tiks_labels = [plot.labels_high_symm_lines[i] for i in
range(len(plot.labels_high_symm_lines)) if
> plot.pos_high_symm_points[i] in x_tiks_positions]
> x_tiks_labels = [xlabel for xlabel in x_tiks_labels if xlabel]
> if x_tiks_labels:
> print (indent + '* K-point labels read from the "' + args.kpoints_file +
'" file:')
> for ilabel in range(len(x_tiks_labels)):
> print(2 * indent + "k =
{:9.5f}".format(x_tiks_positions[ilabel]) + ', label =',\
> x_tiks_labels[ilabel])
> plt.xticks(x_tiks_positions, x_tiks_labels,
fontsize=plot.tick_marks_size)
> else:
> plot.x_axis_label = '$k \hspace{0.25} (\AA^{-1})$'
> plt.locator_params(axis = 'x', nbins = 5)
> ax.set_xlabel(plot.x_axis_label, fontsize=plot.xaxis_labels_size)
> plt.xticks(fontsize=plot.tick_marks_size)
> ax.tick_params(axis='x', pad=10)
>
> # Drawing vertical lines at the positions of the high-symmetry points
> if(not args.no_symm_lines):
> for line_position in [pos for pos in plot.pos_high_symm_points if
float(round(pos, 3)) > float(round(plot.kmin, 3)) and
>
float(round(pos, 3)) < float(round(plot.kmax, 3))]:
> hs_lines = plt.axvline(x=line_position,
c=plot.color_high_symm_lines(image), linestyle=plot.line_style_high_symm_points,
> lw=plot.line_width_high_symm_points)
>
> # Color bar
> show_colorbar = not args.no_cb
> if show_colorbar:
> if plot.cb_orientation=='vertical':
> cb_pad=0.005
> else:
> cb_pad=0.06
> if(not x_tiks_labels):
> cb_pad += 0.08 # To prevent the cb from overlapping with the
numbers.
>
> cb_yticks = np.arange(int(image.norm.vmin), int(image.norm.vmax) +
1, 1)
>
> cb_ytick_labels = [round(item,abs(args.round_cb)) for item in
cb_yticks]
> cb = plt.colorbar(image, ax=ax, ticks=cb_yticks,
orientation=plot.cb_orientation, pad=cb_pad)
> cb.set_ticklabels(cb_ytick_labels)
> cb.ax.tick_params(labelsize=plot.colorbar_tick_marks_size)
>
> color_bar_label = None
> if args.cb_label:
> color_bar_label = ('$Color scale: \hspace{0.5} \delta
N(\\vec{k}; ' +
> '\hspace{0.25} \epsilon)$ ')
> if args.cb_label_full:
> color_bar_label = ('$Colors cale: \hspace{0.5} \delta
N(\\vec{k}; ' +
> '\hspace{0.25} \epsilon);$ '+
> '$\delta\epsilon=' +
round(1000.0*plot.dE_for_hist2d,0) +
> '\\hspace{0.25} meV.$')
>
> if plot.cb_orientation=='vertical':
> cb_label_rotation = 90
> else:
> cb_label_rotation = 0
> if color_bar_label:
> cb.ax.text(plot.offset_x_text_colorbar,
plot.offset_y_text_colorbar,
> color_bar_label, rotation=cb_label_rotation,
ha='center',
> va='center', fontsize=plot.colorbar_label_size)
>
> # Saving/showing the results
> plt.tick_params(which='both', bottom='off', top='off', left='off',
right='off',
> labelbottom='on')
>
>
> default_out_basename = "_".join([splitext(basename(args.input_file))[0],
'E_from', str(plot.emin), 'to',
> str(plot.emax), 'eV_dE',
> str(plot.dE_for_hist2d), 'eV'])
> if(args.save):
> if(args.output_file is None):
> args.output_file = abspath(default_out_basename + '.' +
args.file_format)
>
> print ('Savig figure to file "%s" ...' % args.output_file)
> if(args.fig_resolution[0].upper() == 'H'):
> print (indent + '* High-resolution figure (600 dpi).')
> fig_resolution_in_dpi = 600
> elif (args.fig_resolution[0].upper() == 'M'):
> print (indent + '* Medium-resolution figure (300 dpi).')
> fig_resolution_in_dpi = 300
> elif (args.fig_resolution[0].upper() == 'L'):
> print (indent + '* Low-resolution figure (100 dpi).')
> fig_resolution_in_dpi = 100
> else:
> print (indent + 'Assuming medium-resolution (300 dpi) for the
figure.')
> fig_resolution_in_dpi = 300
> plt.savefig(args.output_file, dpi=fig_resolution_in_dpi,
bbox_inches='tight')
> print (indent + '* Done saving figure (%s).' % args.output_file)
>
> if args.saveshow:
> print ('Opening saved figure (%s)...' % default_out_basename)
> # 'xdg-open' might fail to find the defualt program in some systems
> # For such cases, one can try to use other alternatives (just add
more to the list below)
> image_viewer_list = ['xdg-open', 'eog']
> for image_viewer in image_viewer_list:
> open_saved_fig = Popen([image_viewer, args.output_file],
stdout=PIPE, stderr=PIPE)
> std_out, std_err = open_saved_fig.communicate()
> success_opening_file = std_err.strip() == ''
> if(success_opening_file):
> break
> if(not success_opening_file):
> print (indent + '* Failed (%s): no image viewer detected.' %
default_out_basename)
>
> if args.show:
> print ('Showing figure (%s)...' % default_out_basename)
> plt.show()
> print (indent + '* Done showing figure (%s).' % default_out_basename)
>
>
> if __name__ == '__main__':
> print_opening_message()
> plot_options = BandUpPlotOptions()
> plot = BandUpPlot(plot_options)
> make_plot(plot)
> sys.exit(0)
>
Look at the line "if(args.save):". That decides whether to save.
Where does args come from? It comes from "args =
plot.plot_options.args". "plot" is passed into "make_plot".
Where does that object come from? It comes from "plot =
BandUpPlot(plot_options)".
Where does "plot_options" come from? It comes from "plot_options =
BandUpPlotOptions()".
What's "BandUpPlotOptions()"? I have no idea. It's not part of what
you've posted.
Now, over to you to do the rest. Maybe it's mentioned in matplotlib's docs.