Thank you for the suggestion. The test harness 
is invoked as follows. So it does already do time/1,
thats also how I did the comparison Standard Python

and GraalVM Python, a file dogelog.py:

import sys
# sys.path.append("<path>\jekrun_bench\core\harness2\libpy")
sys.path.append("/mnt/c/<path>/jekrun_bench/core/harness2/libpy")
from index import init, consult

init()
consult(":- ['suite2.p']. "
        ":- time(suite). "
        ":- nl. "
        ":- time(suite). ")

Here you see a GraalVM cold and warm run.The warm run is faster. 
If you do a warm warm run, it even gets more faster, because of 
JIT-ing, Just-in-Time machine compilation, 

via the GraalVM Truffles framework:

$ export PATH=<path>/graalvm-ce-java8-21.2.0/bin:$PATH
$ cd /mnt/c/<path>/jekrun_bench/core/harness2
$ graalpython /mnt/c/<path>/jekrun_bench/core/harness2/dogelog.py
nrev % Wall 6175 ms, gc 212 ms, 154473 lips
crypt % Wall 9327 ms, gc 63 ms, 112838 lips
deriv % Wall 4101 ms, gc 90 ms, 321890 lips
poly % Wall 3594 ms, gc 415 ms, 216299 lips
sortq % Wall 3427 ms, gc 67 ms, 290070 lips
tictac % Wall 2770 ms, gc 51 ms, 136580 lips
queens % Wall 3287 ms, gc 64 ms, 325617 lips
query % Wall 1432 ms, gc 77 ms, 382969 lips
mtak % Wall 2532 ms, gc 95 ms, 533881 lips
perfect % Wall 3980 ms, gc 76 ms, 290382 lips
% Wall 40745 ms, gc 1212 ms, 235751 lips

nrev % Wall 4508 ms, gc 112 ms, 211595 lips
crypt % Wall 6063 ms, gc 61 ms, 173584 lips
deriv % Wall 3150 ms, gc 42 ms, 419070 lips
poly % Wall 3549 ms, gc 432 ms, 219042 lips
sortq % Wall 3196 ms, gc 63 ms, 311036 lips
tictac % Wall 2670 ms, gc 52 ms, 141695 lips
queens % Wall 3087 ms, gc 60 ms, 346713 lips
query % Wall 1434 ms, gc 25 ms, 382435 lips
mtak % Wall 2596 ms, gc 90 ms, 520719 lips
perfect % Wall 3521 ms, gc 43 ms, 328236 lips
% Wall 33810 ms, gc 980 ms, 284108 lips

DFS schrieb am Mittwoch, 15. September 2021 um 23:15:07 UTC+2:
> On 9/15/2021 12:23 PM, Mostowski Collapse wrote: 
> > I really wonder why my Python implementation 
> > is a factor 40 slower than my JavaScript implementation. 
> > Structurally its the same code. 
> > 
> > You can check yourself: 
> > 
> > Python Version: 
> > https://github.com/jburse/dogelog-moon/blob/main/devel/runtimepy/machine.py 
> > 
> > JavaScript Version: 
> > https://github.com/jburse/dogelog-moon/blob/main/devel/runtime/machine.js 
> > 
> > Its the same while, if-then-else, etc.. its the same 
> > classes Variable, Compound etc.. Maybe I could speed 
> > it up by some details. For example to create an array 
> > of length n, I use in Python: 
> > 
> > temp = [NotImplemented] * code[pos] 
> > pos += 1 
> > 
> > Whereas in JavaScript I use, also 
> > in exec_build2(): 
> > 
> > temp = new Array(code[pos++]); 
> > 
> > So I hear Guido doesn't like ++. So in Python I use += 
> > and a separate statement as a workaround. But otherwise, 
> > what about the creation of an array, 
> > 
> > is the the idiom [_] * _ slow? I am assuming its 
> > compiled away. Or does it really first create an 
> > array of size 1 and then enlarge it?
> I'm sure you know you can put in timing statements to find bottlenecks. 
> 
> import time 
> startTime = time.perf_counter() 
> [code block] 
> print("%.2f" % (time.perf_counter() - startTime))
-- 
https://mail.python.org/mailman/listinfo/python-list

Reply via email to