\

2013/2/7 Peter Crosthwaite <peter.crosthwa...@xilinx.com>:
> Hi Kuo-Jung,
>
> On Wed, Feb 6, 2013 at 7:45 PM, Kuo-Jung Su <dant...@gmail.com> wrote:
>> From: Kuo-Jung Su <dant...@faraday-tech.com>
>>
>> The FTSPI020 is an integrated SPI Flash controller
>> which supports upto 4 flash chips.
>>
>> Signed-off-by: Kuo-Jung Su <dant...@faraday-tech.com>
>> ---
>>  hw/arm/Makefile.objs  |    1 +
>>  hw/arm/faraday_a369.c |   12 ++
>>  hw/arm/ftspi020.c     |  345 
>> +++++++++++++++++++++++++++++++++++++++++++++++++
>>  hw/arm/ftspi020.h     |   50 +++++++
>>  4 files changed, 408 insertions(+)
>>  create mode 100644 hw/arm/ftspi020.c
>>  create mode 100644 hw/arm/ftspi020.h
>>
>> diff --git a/hw/arm/Makefile.objs b/hw/arm/Makefile.objs
>> index 508335a..7178b5d 100644
>> --- a/hw/arm/Makefile.objs
>> +++ b/hw/arm/Makefile.objs
>> @@ -52,3 +52,4 @@ obj-y += ftgmac100.o
>>  obj-y += ftlcdc200.o
>>  obj-y += fttsc010.o
>>  obj-y += ftsdc010.o
>> +obj-y += ftspi020.o
>> diff --git a/hw/arm/faraday_a369.c b/hw/arm/faraday_a369.c
>> index 4ad48f5..132ee2f 100644
>> --- a/hw/arm/faraday_a369.c
>> +++ b/hw/arm/faraday_a369.c
>> @@ -203,6 +203,18 @@ a369_device_init(A369State *s)
>>      req = qdev_get_gpio_in(s->hdma[0], 13);
>>      qdev_connect_gpio_out(s->hdma[0], 13, ack);
>>      qdev_connect_gpio_out(ds, 0, req);
>> +
>> +    /* ftspi020: as an external AHB device */
>> +    ds = sysbus_create_simple("ftspi020", 0xC0000000, pic[13]);
>> +    spi = (SSIBus *)qdev_get_child_bus(ds, "spi");
>> +    nr_flash = 1;
>> +    for (i = 0; i < nr_flash; i++) {
>> +        fl = ssi_create_slave_no_init(spi, "m25p80");
>> +        qdev_prop_set_string(fl, "partname", "w25q64");
>> +        qdev_init_nofail(fl);
>> +        cs_line = qdev_get_gpio_in(fl, 0);
>> +        sysbus_connect_irq(SYS_BUS_DEVICE(ds), i + 1, cs_line);
>> +    }
>>  }
>>
>>  static void
>> diff --git a/hw/arm/ftspi020.c b/hw/arm/ftspi020.c
>> new file mode 100644
>> index 0000000..dab2f6f
>> --- /dev/null
>> +++ b/hw/arm/ftspi020.c
>> @@ -0,0 +1,345 @@
>> +/*
>> + * Faraday FTSPI020 Flash Controller
>> + *
>> + * Copyright (c) 2012 Faraday Technology
>> + * Written by Dante Su <dant...@faraday-tech.com>
>> + *
>> + * This code is licensed under GNU GPL v2+.
>> + */
>> +
>> +#include <hw/hw.h>
>> +#include <sysemu/sysemu.h>
>> +#include <hw/sysbus.h>
>> +#include <hw/ssi.h>
>> +
>> +#include "ftspi020.h"
>> +
>> +#define TYPE_FTSPI020   "ftspi020"
>> +
>> +typedef struct Ftspi020State {
>> +    SysBusDevice busdev;
>> +    MemoryRegion iomem;
>> +    qemu_irq irq;
>> +
>> +    /* DMA hardware handshake */
>> +    qemu_irq req;
>> +
>> +    SSIBus *spi;
>> +    uint8_t num_cs;
>
> Constant. No need for it to be part of the device state, unless you
> want to drive it from a property and let the machine model decide how
> my cs lines you have?
>

Got you! I'll move these stuff to the top of faraday_a36x.c as defines.

>> +    qemu_irq *cs_lines;
>> +
>> +    int wip;    /* SPI Flash Status: Write In Progress BIT shift */
>> +    uint32_t datacnt;
>> +
>> +    /* HW register caches */
>> +    uint32_t cmd[4];
>> +    uint32_t ctrl;
>> +    uint32_t timing;
>> +    uint32_t icr;
>> +    uint32_t isr;
>> +    uint32_t rdsr;
>> +} Ftspi020State;
>> +
>> +#define FTSPI020(obj) \
>> +    OBJECT_CHECK(Ftspi020State, obj, TYPE_FTSPI020)
>> +
>> +static void ftspi020_update_irq(Ftspi020State *s)
>> +{
>> +    if (s->isr) {
>> +        qemu_set_irq(s->irq, 1);
>> +    } else {
>> +        qemu_set_irq(s->irq, 0);
>> +    }
>> +}
>> +
>> +static void ftspi020_handle_ack(void *opaque, int line, int level)
>> +{
>> +    Ftspi020State *s = FTSPI020(opaque);
>> +
>> +    if (!(s->icr & 0x01)) {
>> +        return;
>> +    }
>> +
>> +    if (level) {
>> +        qemu_set_irq(s->req, 0);
>> +    } else if (s->datacnt > 0) {
>> +        qemu_set_irq(s->req, 1);
>> +    }
>> +}
>> +
>> +static int ftspi020_do_command(Ftspi020State *s)
>> +{
>> +    int cs   = (s->cmd[3] >> 8)  & 0x03;
>> +    int cmd  = (s->cmd[3] >> 24) & 0xff;
>> +    int ilen = (s->cmd[1] >> 24) & 0x03;
>> +    int alen = (s->cmd[1] >> 0)  & 0x07;
>> +    int dcyc = (s->cmd[1] >> 16) & 0xff;
>> +
>
> bitops.h has helpers that can extract fields for you without all the
>>> & stuff. Lots of magic numbers here as well, can you #define these
> offsets with meaningful names?

Got you! I'll add some BIT OFFSET and MACROs for these stuff.

>
>> +    /* make sure the spi flash is de-activated */
>> +    qemu_set_irq(s->cs_lines[cs], 1);
>> +
>> +    /* activate the spi flash */
>> +    qemu_set_irq(s->cs_lines[cs], 0);
>> +
>> +    /* if it's a SPI flash READ_STATUS command */
>> +    if ((s->cmd[3] & 0x06) == 0x04) {
>> +        do {
>> +            ssi_transfer(s->spi, cmd);
>> +            s->rdsr = ssi_transfer(s->spi, 0x00);
>> +            if (s->cmd[3] & 0x08) {
>> +                break;
>> +            }
>> +        } while (s->rdsr & (1 << s->wip));
>> +    } else {
>> +    /* otherwise */
>> +        int i;
>> +
>> +        ilen = MIN(ilen, 2);
>> +        alen = MIN(alen, 4);
>> +
>> +        /* command cycles */
>> +        for (i = 0; i < ilen; ++i) {
>> +            ssi_transfer(s->spi, cmd);
>> +        }
>> +        /* address cycles */
>> +        for (i = alen - 1; i >= 0; --i) {
>> +            ssi_transfer(s->spi, (s->cmd[0] >> (8 * i)) & 0xff);
>> +        }
>> +        /* dummy cycles */
>> +        for (i = 0; i < (dcyc >> 3); ++i) {
>> +            ssi_transfer(s->spi, 0x00);
>> +        }
>> +    }
>> +
>> +    if (s->datacnt <= 0) {
>
> == as this is unsigned.

Got you!

>
>> +        qemu_set_irq(s->cs_lines[cs], 1);
>> +    } else if (s->icr & 0x01) {
>> +        qemu_set_irq(s->req, 1);
>> +    }
>> +
>> +    if (s->cmd[3] & 0x01) {
>> +        s->isr |= 0x01;
>> +    }
>> +    ftspi020_update_irq(s);
>> +
>> +    return 0;
>> +}
>> +
>> +static void ftspi020_chip_reset(Ftspi020State *s)
>> +{
>> +    int i;
>> +
>> +    s->datacnt = 0;
>> +    for (i = 0; i < 4; ++i) {
>> +        s->cmd[i] = 0;
>> +    }
>> +    s->wip = 0;
>> +    s->ctrl = 0;
>> +    s->timing = 0;
>> +    s->icr = 0;
>> +    s->isr = 0;
>> +    s->rdsr = 0;
>> +
>> +    qemu_set_irq(s->irq, 0);
>
> Do the cs lines need resetting here?
>

Absolutely

>> +}
>> +
>> +static uint64_t ftspi020_mem_read(void *opaque, hwaddr addr, unsigned size)
>> +{
>> +    Ftspi020State *s = FTSPI020(opaque);
>> +    uint64_t ret = 0;
>> +
>> +    switch (addr) {
>> +    case REG_DATA:
>> +        if (!(s->cmd[3] & 0x02)) {
>> +            if (s->datacnt > 0) {
>> +                ret |= (uint32_t)(ssi_transfer(s->spi, 0x00) & 0xff) << 0;
>> +                ret |= (uint32_t)(ssi_transfer(s->spi, 0x00) & 0xff) << 8;
>> +                ret |= (uint32_t)(ssi_transfer(s->spi, 0x00) & 0xff) << 16;
>> +                ret |= (uint32_t)(ssi_transfer(s->spi, 0x00) & 0xff) << 24;
>
> loopable:
>
> for (i = 0; i < 4; ++i) {
>     ret = deposit32(ret, i * 8, 8, (uint32_t)(ssi_transfer(s->spi,
> 0x00) & 0xff));
> }
>

Got you

>> +                s->datacnt = (s->datacnt < 4) ? 0 : (s->datacnt - 4);
>> +            }
>> +            if (s->datacnt == 0) {
>> +                uint8_t cs = (s->cmd[3] >> 8)  & 0x03;
>> +                qemu_set_irq(s->cs_lines[cs], 1);
>> +                if (s->cmd[3] & 0x01) {
>> +                    s->isr |= 0x01;
>> +                }
>> +                ftspi020_update_irq(s);
>> +            }
>> +        }
>> +        break;
>> +    case REG_RDST:
>> +        return s->rdsr;
>> +    case REG_CMD0:
>
> the case .. syntax would allow you to collapse these 4 into 1:
>
> case REG_CMD0 .. REG_CMD3:
>      return s->cmd[(addr - REG_CMD0) / 4]
>

Got you

>> +        return s->cmd[0];
>> +    case REG_CMD1:
>> +        return s->cmd[1];
>> +    case REG_CMD2:
>> +        return s->cmd[2];
>> +    case REG_CMD3:
>> +        return s->cmd[3];
>> +    case REG_STR:
>> +        /* In QEMU, the data fifo is always ready for read/write */
>> +        return 0x00000003;
>> +    case REG_ISR:
>> +        return s->isr;
>> +    case REG_ICR:
>> +        return s->icr;
>> +    case REG_CTRL:
>> +        return s->ctrl;
>> +    case REG_ACT:
>> +        return s->timing;
>> +    case REG_REV:
>> +        return 0x00010001;
>> +    case REG_FEA:
>> +        return 0x02022020;
>
> Few magic numbers here
>

case REG_REV:
      return 0x00010001;   /* revision 1.0.1 */
case REG_FEA:
      return 0x02022020;   /* Clock Mode=SYNC, cmd queue = 4, tx/rx fifo=32 */

However in QEMU, there is no I/O delay to access the underlying SPI flash,
so the clock, and fifo depth information are totally useless.

>> +    default:
>> +        break;
>> +    }
>> +
>> +    return ret;
>> +}
>> +
>> +static void ftspi020_mem_write(void    *opaque,
>> +                               hwaddr   addr,
>> +                               uint64_t val,
>> +                               unsigned size)
>> +{
>> +    Ftspi020State *s = FTSPI020(opaque);
>> +
>> +    switch (addr) {
>> +    case REG_DATA:
>> +        if (s->cmd[3] & 0x02) {
>> +            if (s->datacnt > 0) {
>> +                ssi_transfer(s->spi, (uint8_t)((val >> 0) & 0xff));
>> +                ssi_transfer(s->spi, (uint8_t)((val >> 8) & 0xff));
>> +                ssi_transfer(s->spi, (uint8_t)((val >> 16) & 0xff));
>> +                ssi_transfer(s->spi, (uint8_t)((val >> 24) & 0xff));
>> +                s->datacnt = (s->datacnt < 4) ? 0 : (s->datacnt - 4);
>> +            }
>> +            if (s->datacnt == 0) {
>> +                uint8_t cs = (s->cmd[3] >> 8)  & 0x03;
>> +                qemu_set_irq(s->cs_lines[cs], 1);
>> +                if (s->cmd[3] & 0x01) {
>> +                    s->isr |= 0x01;
>> +                }
>> +                ftspi020_update_irq(s);
>> +            }
>> +        }
>> +        break;
>> +    case REG_CMD0:
>> +        s->cmd[0] = (uint32_t)val;
>> +        break;
>> +    case REG_CMD1:
>> +        s->cmd[1] = (uint32_t)val;
>> +        break;
>> +    case REG_CMD2:
>> +        s->datacnt = s->cmd[2] = (uint32_t)val;
>> +        break;
>> +    case REG_CMD3:
>> +        s->cmd[3] = (uint32_t)val;
>> +        ftspi020_do_command(s);
>> +        break;
>> +    case REG_ISR:
>> +        s->isr &= ~((uint32_t)val);
>> +        ftspi020_update_irq(s);
>> +        break;
>> +    case REG_ICR:
>> +        s->icr = (uint32_t)val;
>> +        break;
>> +    case REG_CTRL:
>> +        if (val & 0x100) {
>> +            ftspi020_chip_reset(s);
>> +        }
>> +        s->ctrl = (uint32_t)val & 0x70013;
>> +        s->wip = ((uint32_t)val >> 16) & 0x07;
>> +        break;
>> +    case REG_ACT:
>> +        s->timing = (uint32_t)val;
>> +        break;
>> +    default:
>> +        break;
>> +    }
>> +}
>> +
>> +static const MemoryRegionOps ftspi020_ops = {
>> +    .read  = ftspi020_mem_read,
>> +    .write = ftspi020_mem_write,
>> +    .endianness = DEVICE_LITTLE_ENDIAN,
>> +};
>> +
>> +static void ftspi020_reset(DeviceState *ds)
>> +{
>> +    SysBusDevice *busdev = SYS_BUS_DEVICE(ds);
>> +    Ftspi020State *s = FTSPI020(FROM_SYSBUS(Ftspi020State, busdev));
>> +
>> +    ftspi020_chip_reset(s);
>> +}
>> +
>> +static int ftspi020_init(SysBusDevice *dev)
>> +{
>> +    Ftspi020State *s = FTSPI020(FROM_SYSBUS(Ftspi020State, dev));
>> +    int i;
>> +
>> +    memory_region_init_io(&s->iomem,
>> +                          &ftspi020_ops,
>> +                          s,
>> +                          TYPE_FTSPI020,
>> +                          0x1000);
>> +    sysbus_init_mmio(dev, &s->iomem);
>> +    sysbus_init_irq(dev, &s->irq);
>> +
>> +    s->spi = ssi_create_bus(&dev->qdev, "spi");
>> +    s->num_cs = 4;
>> +    s->cs_lines = g_new(qemu_irq, s->num_cs);
>> +    ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi);
>> +    for (i = 0; i < s->num_cs; ++i) {
>> +        sysbus_init_irq(dev, &s->cs_lines[i]);
>> +    }
>> +
>> +    qdev_init_gpio_in(&s->busdev.qdev, ftspi020_handle_ack, 1);
>> +    qdev_init_gpio_out(&s->busdev.qdev, &s->req, 1);
>> +
>> +    return 0;
>> +}
>> +
>> +static const VMStateDescription vmstate_ftspi020 = {
>> +    .name = TYPE_FTSPI020,
>> +    .version_id = 1,
>> +    .minimum_version_id = 1,
>> +    .minimum_version_id_old = 1,
>> +    .fields = (VMStateField[]) {
>> +        VMSTATE_UINT32_ARRAY(cmd, Ftspi020State, 4),
>> +        VMSTATE_UINT32(ctrl, Ftspi020State),
>> +        VMSTATE_UINT32(timing, Ftspi020State),
>> +        VMSTATE_UINT32(icr, Ftspi020State),
>> +        VMSTATE_UINT32(isr, Ftspi020State),
>> +        VMSTATE_UINT32(rdsr, Ftspi020State),
>
> datacnt is missing. I think you need to save it as it is device state
> that would need to be preserved if you machine got migrated in the
> middle of a transaction.
>

Got you

>> +        VMSTATE_END_OF_LIST(),
>> +    }
>> +};
>> +
>> +static void ftspi020_class_init(ObjectClass *klass, void *data)
>> +{
>> +    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
>> +    DeviceClass *dc = DEVICE_CLASS(klass);
>> +
>> +    k->init     = ftspi020_init;
>> +    dc->vmsd    = &vmstate_ftspi020;
>> +    dc->reset   = ftspi020_reset;
>> +    dc->no_user = 1;
>> +}
>> +
>> +static const TypeInfo ftspi020_info = {
>> +    .name          = TYPE_FTSPI020,
>> +    .parent        = TYPE_SYS_BUS_DEVICE,
>> +    .instance_size = sizeof(Ftspi020State),
>> +    .class_init    = ftspi020_class_init,
>> +};
>> +
>> +static void ftspi020_register_types(void)
>> +{
>> +    type_register_static(&ftspi020_info);
>> +}
>> +
>> +type_init(ftspi020_register_types)
>> diff --git a/hw/arm/ftspi020.h b/hw/arm/ftspi020.h
>> new file mode 100644
>> index 0000000..a8a0930
>> --- /dev/null
>> +++ b/hw/arm/ftspi020.h
>> @@ -0,0 +1,50 @@
>> +/*
>> + * Faraday FTSPI020 Flash Controller
>> + *
>> + * Copyright (c) 2012 Faraday Technology
>> + * Written by Dante Su <dant...@faraday-tech.com>
>> + *
>> + * This code is licensed under GNU GPL v2+.
>> + */
>> +
>> +#ifndef HW_ARM_FTSPI020_H
>> +#define HW_ARM_FTSPI020_H
>> +
>
> This device is not exporting any extensible APIs there is no need for
> a header specific to this device.
>

Got you, but does this applied to ftrtc011 ?
I remember someone had made a request to me to create header files
for registers. Or maybe it's just a mis-understanding.

>> +/******************************************************************************
>> + * FTSPI020 registers
>> + 
>> *****************************************************************************/
>> +#define REG_CMD0            0x00    /* Flash address */
>> +#define REG_CMD1            0x04
>> +#define REG_CMD2            0x08
>> +#define REG_CMD3            0x0c
>> +#define REG_CTRL            0x10    /* Control Register */
>> +#define REG_ACT             0x14    /* AC Timing Register */
>> +#define REG_STR             0x18    /* Status Register */
>> +#define REG_ICR             0x20    /* Interrupt Control Register */
>> +#define REG_ISR             0x24    /* Interrupt Status Register */
>> +#define REG_RDST            0x28    /* Read Status Register */
>> +#define REG_REV             0x50    /* Revision Register */
>> +#define REG_FEA             0x54    /* Feature Register */
>> +#define REG_DATA            0x100    /* Data Register */
>> +
>
> These can just live in the C file - they are private to the implementation.
>

Same above

>> +/******************************************************************************
>> + * Common SPI flash opcodes (Not FTSPI020 specific)
>> + 
>> *****************************************************************************/
>> +#define OPCODE_WREN         0x06    /* Write enable */
>> +#define OPCODE_WRSR         0x01    /* Write status register 1 byte */
>> +#define OPCODE_RDSR         0x05    /* Read status register */
>> +#define OPCODE_NORM_READ    0x03    /* Read data bytes (low frequency) */
>> +#define OPCODE_NORM_READ4   0x13    /* Read data bytes (4 bytes address) */
>> +#define OPCODE_FAST_READ    0x0b    /* Read data bytes (high frequency) */
>> +#define OPCODE_FAST_READ4   0x0c    /* Read data bytes (4 bytes address) */
>> +#define OPCODE_PP           0x02    /* Page program (up to 256 bytes) */
>> +#define OPCODE_PP4          0x12    /* Page program (4 bytes address) */
>> +#define OPCODE_SE           0xd8    /* Sector erase (usually 64KiB) */
>> +#define OPCODE_SE4          0xdc    /* Sector erase (4 bytes address) */
>> +#define OPCODE_RDID         0x9f    /* Read JEDEC ID */
>> +
>
> This is repetition of M25P80s command opcodes. If anything, we should
> factor these out into m25p80.h (doesnt exist yet) as this is the
> second device model (apart from m25p80 itself) to need these. The
> other one is xilinx_spips.c. However i notice almost all of these are
> unused by your device model. Apart from the little bit of logic around
> RDSR, is there any flash command-specific functionality in this
> device? AFAICT it just accepts command code, address, num dummies and
> payload size and the details of what those commands mean is abstracted
> away from this hardware, making this table mostly redundant. If you
> have future work that will need this that's another matter however.
>

You're absolutely right, the SPI flash commands has been abstracted.
None of the OPCODE is used i the model.

About the RDSR, it requires the driver to set corresponding BIT in s->cmd[3]
before issuing a RDSR(0x05) to underlying SPI flash device.

These bits are

BIT3 - 0: polling status by hardware, driver should polling the status
register of FTSPI020
             to check when the flash is back to idle state. (RDSR is
sent only once)
         1: polling status by hardware, driver would have to keep
sending RDSR and
             read the status back to check if the flash is now idle.

BIT2 - 0: this command is not a RDSR (READ_STATUS)
         1: this command is a RDSR (READ_STATUS)

BTW, tomorrow is the beginning of my Chinese New Year holidays, so
please forgive me
that I won't be able to make any response to the comments for 10 days.

> Regards,
> Peter
>
>> +/* Status Register bits. */
>> +#define SR_WIP              1        /* Write in progress */
>> +#define SR_WEL              2        /* Write enable latch */
>> +
>> +#endif
>> --
>> 1.7.9.5
>>
>>



--
Best wishes,
Kuo-Jung Su

Reply via email to