On Fri, Jun 29, 2018 at 03:30:44PM +0800, Xiao Guangrong wrote:
> 
> Hi Michael,
> 
> On 06/20/2018 08:38 PM, Michael S. Tsirkin wrote:
> > On Mon, Jun 04, 2018 at 05:55:17PM +0800, guangrong.x...@gmail.com wrote:
> > > From: Xiao Guangrong <xiaoguangr...@tencent.com>
> 
> > > 
> > > 
> > > (1) 
> > > https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/kfifo.h
> > > (2) http://dpdk.org/doc/api/rte__ring_8h.html
> > > 
> > > Signed-off-by: Xiao Guangrong <xiaoguangr...@tencent.com>
> > 
> > So instead of all this super-optimized trickiness, how about
> > a simple port of ptr_ring from linux?
> > 
> > That one isn't lockless but it's known to outperform
> > most others for a single producer/single consumer case.
> > And with a ton of networking going on,
> > who said it's such a hot spot? OTOH this implementation
> > has more barriers which slows down each individual thread.
> > It's also a source of bugs.
> > 
> 
> Thank you for pointing it out.
> 
> I just quickly went through the code of ptr_ring that is very nice and
> really impressive. I will consider to port it to QEMU.

The port is pretty trivial. See below. It's a SPSC structure though.  So
you need to use it with lock.  Given the critical section is small, I
put in QmueSpin, not a mutex.  To reduce cost of locks, it helps if you
can use the batches API to consume. I assume producers can't batch
but if they can, we should add an API for that, will help too.


---

qemu/ptr_ring.h: straight port from Linux 4.17

Port done by author.

Signed-off-by: Michael S. Tsirkin <m...@redhat.com>

diff --git a/include/qemu/ptr_ring.h b/include/qemu/ptr_ring.h
new file mode 100644
index 0000000000..f7446678de
--- /dev/null
+++ b/include/qemu/ptr_ring.h
@@ -0,0 +1,464 @@
+/*
+ *     Definitions for the 'struct ptr_ring' datastructure.
+ *
+ *     Author:
+ *             Michael S. Tsirkin <m...@redhat.com>
+ *
+ *     Copyright (C) 2016 Red Hat, Inc.
+ *
+ *     This program is free software; you can redistribute it and/or modify it
+ *     under the terms of the GNU General Public License as published by the
+ *     Free Software Foundation; either version 2 of the License, or (at your
+ *     option) any later version.
+ *
+ *     This is a limited-size FIFO maintaining pointers in FIFO order, with
+ *     one CPU producing entries and another consuming entries from a FIFO.
+ *
+ *     This implementation tries to minimize cache-contention when there is a
+ *     single producer and a single consumer CPU.
+ */
+
+#ifndef QEMU_PTR_RING_H
+#define QEMU_PTR_RING_H 1
+
+#include "qemu/thread.h"
+
+#define PTR_RING_CACHE_BYTES 64
+#define PTR_RING_CACHE_ALIGNED 
__attribute__((__aligned__(PTR_RING_CACHE_BYTES)))
+#define PTR_RING_WRITE_ONCE(p, v) (*(volatile typeof(&(p)))(&(p)) = (v))
+#define PTR_RING_READ_ONCE(p) (*(volatile typeof(&(p)))(&(p)))
+
+struct ptr_ring {
+       int producer PTR_RING_CACHE_ALIGNED;
+       QemuSpin producer_lock;
+       int consumer_head PTR_RING_CACHE_ALIGNED; /* next valid entry */
+       int consumer_tail; /* next entry to invalidate */
+       QemuSpin consumer_lock;
+       /* Shared consumer/producer data */
+       /* Read-only by both the producer and the consumer */
+       int size PTR_RING_CACHE_ALIGNED; /* max entries in queue */
+       int batch; /* number of entries to consume in a batch */
+       void **queue;
+};
+
+/* Note: callers invoking this in a loop must use a compiler barrier,
+ * for example cpu_relax().
+ *
+ * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock:
+ * see e.g. ptr_ring_full.
+ */
+static inline bool __ptr_ring_full(struct ptr_ring *r)
+{
+       return r->queue[r->producer];
+}
+
+static inline bool ptr_ring_full(struct ptr_ring *r)
+{
+       bool ret;
+
+       qemu_spin_lock(&r->producer_lock);
+       ret = __ptr_ring_full(r);
+       qemu_spin_unlock(&r->producer_lock);
+
+       return ret;
+}
+
+/* Note: callers invoking this in a loop must use a compiler barrier,
+ * for example cpu_relax(). Callers must hold producer_lock.
+ * Callers are responsible for making sure pointer that is being queued
+ * points to a valid data.
+ */
+static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
+{
+       if (unlikely(!r->size) || r->queue[r->producer])
+               return -ENOSPC;
+
+       /* Make sure the pointer we are storing points to a valid data. */
+       /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
+       smp_wmb();
+
+       PTR_RING_WRITE_ONCE(r->queue[r->producer++], ptr);
+       if (unlikely(r->producer >= r->size))
+               r->producer = 0;
+       return 0;
+}
+
+/*
+ * Note: resize (below) nests producer lock within consumer lock, so if you
+ * consume in interrupt or BH context, you must disable interrupts/BH when
+ * calling this.
+ */
+static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
+{
+       int ret;
+
+       qemu_spin_lock(&r->producer_lock);
+       ret = __ptr_ring_produce(r, ptr);
+       qemu_spin_unlock(&r->producer_lock);
+
+       return ret;
+}
+
+static inline void *__ptr_ring_peek(struct ptr_ring *r)
+{
+       if (likely(r->size))
+               return PTR_RING_READ_ONCE(r->queue[r->consumer_head]);
+       return NULL;
+}
+
+/*
+ * Test ring empty status without taking any locks.
+ *
+ * NB: This is only safe to call if ring is never resized.
+ *
+ * However, if some other CPU consumes ring entries at the same time, the value
+ * returned is not guaranteed to be correct.
+ *
+ * In this case - to avoid incorrectly detecting the ring
+ * as empty - the CPU consuming the ring entries is responsible
+ * for either consuming all ring entries until the ring is empty,
+ * or synchronizing with some other CPU and causing it to
+ * re-test __ptr_ring_empty and/or consume the ring enteries
+ * after the synchronization point.
+ *
+ * Note: callers invoking this in a loop must use a compiler barrier,
+ * for example cpu_relax().
+ */
+static inline bool __ptr_ring_empty(struct ptr_ring *r)
+{
+       if (likely(r->size))
+               return !r->queue[PTR_RING_READ_ONCE(r->consumer_head)];
+       return true;
+}
+
+static inline bool ptr_ring_empty(struct ptr_ring *r)
+{
+       bool ret;
+
+       qemu_spin_lock(&r->consumer_lock);
+       ret = __ptr_ring_empty(r);
+       qemu_spin_unlock(&r->consumer_lock);
+
+       return ret;
+}
+
+/* Must only be called after __ptr_ring_peek returned !NULL */
+static inline void __ptr_ring_discard_one(struct ptr_ring *r)
+{
+       /* Fundamentally, what we want to do is update consumer
+        * index and zero out the entry so producer can reuse it.
+        * Doing it naively at each consume would be as simple as:
+        *       consumer = r->consumer;
+        *       r->queue[consumer++] = NULL;
+        *       if (unlikely(consumer >= r->size))
+        *               consumer = 0;
+        *       r->consumer = consumer;
+        * but that is suboptimal when the ring is full as producer is writing
+        * out new entries in the same cache line.  Defer these updates until a
+        * batch of entries has been consumed.
+        */
+       /* Note: we must keep consumer_head valid at all times for 
__ptr_ring_empty
+        * to work correctly.
+        */
+       int consumer_head = r->consumer_head;
+       int head = consumer_head++;
+
+       /* Once we have processed enough entries invalidate them in
+        * the ring all at once so producer can reuse their space in the ring.
+        * We also do this when we reach end of the ring - not mandatory
+        * but helps keep the implementation simple.
+        */
+       if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
+                    consumer_head >= r->size)) {
+               /* Zero out entries in the reverse order: this way we touch the
+                * cache line that producer might currently be reading the last;
+                * producer won't make progress and touch other cache lines
+                * besides the first one until we write out all entries.
+                */
+               while (likely(head >= r->consumer_tail))
+                       r->queue[head--] = NULL;
+               r->consumer_tail = consumer_head;
+       }
+       if (unlikely(consumer_head >= r->size)) {
+               consumer_head = 0;
+               r->consumer_tail = 0;
+       }
+       /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
+       PTR_RING_WRITE_ONCE(r->consumer_head, consumer_head);
+}
+
+static inline void *__ptr_ring_consume(struct ptr_ring *r)
+{
+       void *ptr;
+
+       /* The READ_ONCE in __ptr_ring_peek guarantees that anyone
+        * accessing data through the pointer is up to date. Pairs
+        * with smp_wmb in __ptr_ring_produce.
+        */
+       ptr = __ptr_ring_peek(r);
+       if (ptr)
+               __ptr_ring_discard_one(r);
+
+       return ptr;
+}
+
+static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
+                                            void **array, int n)
+{
+       void *ptr;
+       int i;
+
+       for (i = 0; i < n; i++) {
+               ptr = __ptr_ring_consume(r);
+               if (!ptr)
+                       break;
+               array[i] = ptr;
+       }
+
+       return i;
+}
+
+/*
+ * Note: resize (below) nests producer lock within consumer lock, so if you
+ * call this in interrupt or BH context, you must disable interrupts/BH when
+ * producing.
+ */
+static inline void *ptr_ring_consume(struct ptr_ring *r)
+{
+       void *ptr;
+
+       qemu_spin_lock(&r->consumer_lock);
+       ptr = __ptr_ring_consume(r);
+       qemu_spin_unlock(&r->consumer_lock);
+
+       return ptr;
+}
+
+static inline int ptr_ring_consume_batched(struct ptr_ring *r,
+                                          void **array, int n)
+{
+       int ret;
+
+       qemu_spin_lock(&r->consumer_lock);
+       ret = __ptr_ring_consume_batched(r, array, n);
+       qemu_spin_unlock(&r->consumer_lock);
+
+       return ret;
+}
+
+/* Cast to structure type and call a function without discarding from FIFO.
+ * Function must return a value.
+ * Callers must take consumer_lock.
+ */
+#define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
+
+#define PTR_RING_PEEK_CALL(r, f) ({ \
+       typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
+       \
+       qemu_spin_lock(&(r)->consumer_lock); \
+       __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
+       qemu_spin_unlock(&(r)->consumer_lock); \
+       __PTR_RING_PEEK_CALL_v; \
+})
+
+static inline void **__ptr_ring_init_queue_alloc(unsigned int size)
+{
+       return g_try_new(void *, size);
+}
+
+static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
+{
+       r->size = size;
+       r->batch = PTR_RING_CACHE_BYTES * 2 / sizeof(*(r->queue));
+       /* We need to set batch at least to 1 to make logic
+        * in __ptr_ring_discard_one work correctly.
+        * Batching too much (because ring is small) would cause a lot of
+        * burstiness. Needs tuning, for now disable batching.
+        */
+       if (r->batch > r->size / 2 || !r->batch)
+               r->batch = 1;
+}
+
+static inline int ptr_ring_init(struct ptr_ring *r, int size)
+{
+       r->queue = __ptr_ring_init_queue_alloc(size);
+       if (!r->queue)
+               return -ENOMEM;
+
+       __ptr_ring_set_size(r, size);
+       r->producer = r->consumer_head = r->consumer_tail = 0;
+       qemu_spin_init(&r->producer_lock);
+       qemu_spin_init(&r->consumer_lock);
+
+       return 0;
+}
+
+/*
+ * Return entries into ring. Destroy entries that don't fit.
+ *
+ * Note: this is expected to be a rare slow path operation.
+ *
+ * Note: producer lock is nested within consumer lock, so if you
+ * resize you must make sure all uses nest correctly.
+ * In particular if you consume ring in interrupt or BH context, you must
+ * disable interrupts/BH when doing so.
+ */
+static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
+                                     void (*destroy)(void *))
+{
+       int head;
+
+       qemu_spin_lock(&r->consumer_lock);
+       qemu_spin_lock(&r->producer_lock);
+
+       if (!r->size)
+               goto done;
+
+       /*
+        * Clean out buffered entries (for simplicity). This way following code
+        * can test entries for NULL and if not assume they are valid.
+        */
+       head = r->consumer_head - 1;
+       while (likely(head >= r->consumer_tail))
+               r->queue[head--] = NULL;
+       r->consumer_tail = r->consumer_head;
+
+       /*
+        * Go over entries in batch, start moving head back and copy entries.
+        * Stop when we run into previously unconsumed entries.
+        */
+       while (n) {
+               head = r->consumer_head - 1;
+               if (head < 0)
+                       head = r->size - 1;
+               if (r->queue[head]) {
+                       /* This batch entry will have to be destroyed. */
+                       goto done;
+               }
+               r->queue[head] = batch[--n];
+               r->consumer_tail = head;
+               /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
+               PTR_RING_WRITE_ONCE(r->consumer_head, head);
+       }
+
+done:
+       /* Destroy all entries left in the batch. */
+       while (n)
+               destroy(batch[--n]);
+       qemu_spin_unlock(&r->producer_lock);
+       qemu_spin_unlock(&r->consumer_lock);
+}
+
+static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
+                                                   int size,
+                                                   void (*destroy)(void *))
+{
+       int producer = 0;
+       void **old;
+       void *ptr;
+
+       while ((ptr = __ptr_ring_consume(r)))
+               if (producer < size)
+                       queue[producer++] = ptr;
+               else if (destroy)
+                       destroy(ptr);
+
+       __ptr_ring_set_size(r, size);
+       r->producer = producer;
+       r->consumer_head = 0;
+       r->consumer_tail = 0;
+       old = r->queue;
+       r->queue = queue;
+
+       return old;
+}
+
+/*
+ * Note: producer lock is nested within consumer lock, so if you
+ * resize you must make sure all uses nest correctly.
+ * In particular if you consume ring in interrupt or BH context, you must
+ * disable interrupts/BH when doing so.
+ */
+static inline int ptr_ring_resize(struct ptr_ring *r, int size,
+                                 void (*destroy)(void *))
+{
+       void **queue = __ptr_ring_init_queue_alloc(size);
+       void **old;
+
+       if (!queue)
+               return -ENOMEM;
+
+       qemu_spin_lock(&(r)->consumer_lock);
+       qemu_spin_lock(&(r)->producer_lock);
+
+       old = __ptr_ring_swap_queue(r, queue, size, destroy);
+
+       qemu_spin_unlock(&(r)->producer_lock);
+       qemu_spin_unlock(&(r)->consumer_lock);
+
+       g_free(old);
+
+       return 0;
+}
+
+/*
+ * Note: producer lock is nested within consumer lock, so if you
+ * resize you must make sure all uses nest correctly.
+ * In particular if you consume ring in interrupt or BH context, you must
+ * disable interrupts/BH when doing so.
+ */
+static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
+                                          unsigned int nrings,
+                                          int size,
+                                          void (*destroy)(void *))
+{
+       void ***queues;
+       int i;
+
+       queues = g_try_new(void **, nrings);
+       if (!queues)
+               goto noqueues;
+
+       for (i = 0; i < nrings; ++i) {
+               queues[i] = __ptr_ring_init_queue_alloc(size);
+               if (!queues[i])
+                       goto nomem;
+       }
+
+       for (i = 0; i < nrings; ++i) {
+               qemu_spin_lock(&(rings[i])->consumer_lock);
+               qemu_spin_lock(&(rings[i])->producer_lock);
+               queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
+                                                 size, destroy);
+               qemu_spin_unlock(&(rings[i])->producer_lock);
+               qemu_spin_unlock(&(rings[i])->consumer_lock);
+       }
+
+       for (i = 0; i < nrings; ++i)
+               g_free(queues[i]);
+
+       g_free(queues);
+
+       return 0;
+
+nomem:
+       while (--i >= 0)
+               g_free(queues[i]);
+
+       g_free(queues);
+
+noqueues:
+       return -ENOMEM;
+}
+
+static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void 
*))
+{
+       void *ptr;
+
+       if (destroy)
+               while ((ptr = ptr_ring_consume(r)))
+                       destroy(ptr);
+       g_free(r->queue);
+}
+
+#endif /* _LINUX_PTR_RING_H  */

Reply via email to