On Fri, Jun 29, 2018 at 03:30:44PM +0800, Xiao Guangrong wrote: > > Hi Michael, > > On 06/20/2018 08:38 PM, Michael S. Tsirkin wrote: > > On Mon, Jun 04, 2018 at 05:55:17PM +0800, guangrong.x...@gmail.com wrote: > > > From: Xiao Guangrong <xiaoguangr...@tencent.com> > > > > > > > > > > (1) > > > https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/kfifo.h > > > (2) http://dpdk.org/doc/api/rte__ring_8h.html > > > > > > Signed-off-by: Xiao Guangrong <xiaoguangr...@tencent.com> > > > > So instead of all this super-optimized trickiness, how about > > a simple port of ptr_ring from linux? > > > > That one isn't lockless but it's known to outperform > > most others for a single producer/single consumer case. > > And with a ton of networking going on, > > who said it's such a hot spot? OTOH this implementation > > has more barriers which slows down each individual thread. > > It's also a source of bugs. > > > > Thank you for pointing it out. > > I just quickly went through the code of ptr_ring that is very nice and > really impressive. I will consider to port it to QEMU.
The port is pretty trivial. See below. It's a SPSC structure though. So you need to use it with lock. Given the critical section is small, I put in QmueSpin, not a mutex. To reduce cost of locks, it helps if you can use the batches API to consume. I assume producers can't batch but if they can, we should add an API for that, will help too. --- qemu/ptr_ring.h: straight port from Linux 4.17 Port done by author. Signed-off-by: Michael S. Tsirkin <m...@redhat.com> diff --git a/include/qemu/ptr_ring.h b/include/qemu/ptr_ring.h new file mode 100644 index 0000000000..f7446678de --- /dev/null +++ b/include/qemu/ptr_ring.h @@ -0,0 +1,464 @@ +/* + * Definitions for the 'struct ptr_ring' datastructure. + * + * Author: + * Michael S. Tsirkin <m...@redhat.com> + * + * Copyright (C) 2016 Red Hat, Inc. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + * This is a limited-size FIFO maintaining pointers in FIFO order, with + * one CPU producing entries and another consuming entries from a FIFO. + * + * This implementation tries to minimize cache-contention when there is a + * single producer and a single consumer CPU. + */ + +#ifndef QEMU_PTR_RING_H +#define QEMU_PTR_RING_H 1 + +#include "qemu/thread.h" + +#define PTR_RING_CACHE_BYTES 64 +#define PTR_RING_CACHE_ALIGNED __attribute__((__aligned__(PTR_RING_CACHE_BYTES))) +#define PTR_RING_WRITE_ONCE(p, v) (*(volatile typeof(&(p)))(&(p)) = (v)) +#define PTR_RING_READ_ONCE(p) (*(volatile typeof(&(p)))(&(p))) + +struct ptr_ring { + int producer PTR_RING_CACHE_ALIGNED; + QemuSpin producer_lock; + int consumer_head PTR_RING_CACHE_ALIGNED; /* next valid entry */ + int consumer_tail; /* next entry to invalidate */ + QemuSpin consumer_lock; + /* Shared consumer/producer data */ + /* Read-only by both the producer and the consumer */ + int size PTR_RING_CACHE_ALIGNED; /* max entries in queue */ + int batch; /* number of entries to consume in a batch */ + void **queue; +}; + +/* Note: callers invoking this in a loop must use a compiler barrier, + * for example cpu_relax(). + * + * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock: + * see e.g. ptr_ring_full. + */ +static inline bool __ptr_ring_full(struct ptr_ring *r) +{ + return r->queue[r->producer]; +} + +static inline bool ptr_ring_full(struct ptr_ring *r) +{ + bool ret; + + qemu_spin_lock(&r->producer_lock); + ret = __ptr_ring_full(r); + qemu_spin_unlock(&r->producer_lock); + + return ret; +} + +/* Note: callers invoking this in a loop must use a compiler barrier, + * for example cpu_relax(). Callers must hold producer_lock. + * Callers are responsible for making sure pointer that is being queued + * points to a valid data. + */ +static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr) +{ + if (unlikely(!r->size) || r->queue[r->producer]) + return -ENOSPC; + + /* Make sure the pointer we are storing points to a valid data. */ + /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */ + smp_wmb(); + + PTR_RING_WRITE_ONCE(r->queue[r->producer++], ptr); + if (unlikely(r->producer >= r->size)) + r->producer = 0; + return 0; +} + +/* + * Note: resize (below) nests producer lock within consumer lock, so if you + * consume in interrupt or BH context, you must disable interrupts/BH when + * calling this. + */ +static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr) +{ + int ret; + + qemu_spin_lock(&r->producer_lock); + ret = __ptr_ring_produce(r, ptr); + qemu_spin_unlock(&r->producer_lock); + + return ret; +} + +static inline void *__ptr_ring_peek(struct ptr_ring *r) +{ + if (likely(r->size)) + return PTR_RING_READ_ONCE(r->queue[r->consumer_head]); + return NULL; +} + +/* + * Test ring empty status without taking any locks. + * + * NB: This is only safe to call if ring is never resized. + * + * However, if some other CPU consumes ring entries at the same time, the value + * returned is not guaranteed to be correct. + * + * In this case - to avoid incorrectly detecting the ring + * as empty - the CPU consuming the ring entries is responsible + * for either consuming all ring entries until the ring is empty, + * or synchronizing with some other CPU and causing it to + * re-test __ptr_ring_empty and/or consume the ring enteries + * after the synchronization point. + * + * Note: callers invoking this in a loop must use a compiler barrier, + * for example cpu_relax(). + */ +static inline bool __ptr_ring_empty(struct ptr_ring *r) +{ + if (likely(r->size)) + return !r->queue[PTR_RING_READ_ONCE(r->consumer_head)]; + return true; +} + +static inline bool ptr_ring_empty(struct ptr_ring *r) +{ + bool ret; + + qemu_spin_lock(&r->consumer_lock); + ret = __ptr_ring_empty(r); + qemu_spin_unlock(&r->consumer_lock); + + return ret; +} + +/* Must only be called after __ptr_ring_peek returned !NULL */ +static inline void __ptr_ring_discard_one(struct ptr_ring *r) +{ + /* Fundamentally, what we want to do is update consumer + * index and zero out the entry so producer can reuse it. + * Doing it naively at each consume would be as simple as: + * consumer = r->consumer; + * r->queue[consumer++] = NULL; + * if (unlikely(consumer >= r->size)) + * consumer = 0; + * r->consumer = consumer; + * but that is suboptimal when the ring is full as producer is writing + * out new entries in the same cache line. Defer these updates until a + * batch of entries has been consumed. + */ + /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty + * to work correctly. + */ + int consumer_head = r->consumer_head; + int head = consumer_head++; + + /* Once we have processed enough entries invalidate them in + * the ring all at once so producer can reuse their space in the ring. + * We also do this when we reach end of the ring - not mandatory + * but helps keep the implementation simple. + */ + if (unlikely(consumer_head - r->consumer_tail >= r->batch || + consumer_head >= r->size)) { + /* Zero out entries in the reverse order: this way we touch the + * cache line that producer might currently be reading the last; + * producer won't make progress and touch other cache lines + * besides the first one until we write out all entries. + */ + while (likely(head >= r->consumer_tail)) + r->queue[head--] = NULL; + r->consumer_tail = consumer_head; + } + if (unlikely(consumer_head >= r->size)) { + consumer_head = 0; + r->consumer_tail = 0; + } + /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ + PTR_RING_WRITE_ONCE(r->consumer_head, consumer_head); +} + +static inline void *__ptr_ring_consume(struct ptr_ring *r) +{ + void *ptr; + + /* The READ_ONCE in __ptr_ring_peek guarantees that anyone + * accessing data through the pointer is up to date. Pairs + * with smp_wmb in __ptr_ring_produce. + */ + ptr = __ptr_ring_peek(r); + if (ptr) + __ptr_ring_discard_one(r); + + return ptr; +} + +static inline int __ptr_ring_consume_batched(struct ptr_ring *r, + void **array, int n) +{ + void *ptr; + int i; + + for (i = 0; i < n; i++) { + ptr = __ptr_ring_consume(r); + if (!ptr) + break; + array[i] = ptr; + } + + return i; +} + +/* + * Note: resize (below) nests producer lock within consumer lock, so if you + * call this in interrupt or BH context, you must disable interrupts/BH when + * producing. + */ +static inline void *ptr_ring_consume(struct ptr_ring *r) +{ + void *ptr; + + qemu_spin_lock(&r->consumer_lock); + ptr = __ptr_ring_consume(r); + qemu_spin_unlock(&r->consumer_lock); + + return ptr; +} + +static inline int ptr_ring_consume_batched(struct ptr_ring *r, + void **array, int n) +{ + int ret; + + qemu_spin_lock(&r->consumer_lock); + ret = __ptr_ring_consume_batched(r, array, n); + qemu_spin_unlock(&r->consumer_lock); + + return ret; +} + +/* Cast to structure type and call a function without discarding from FIFO. + * Function must return a value. + * Callers must take consumer_lock. + */ +#define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r))) + +#define PTR_RING_PEEK_CALL(r, f) ({ \ + typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ + \ + qemu_spin_lock(&(r)->consumer_lock); \ + __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ + qemu_spin_unlock(&(r)->consumer_lock); \ + __PTR_RING_PEEK_CALL_v; \ +}) + +static inline void **__ptr_ring_init_queue_alloc(unsigned int size) +{ + return g_try_new(void *, size); +} + +static inline void __ptr_ring_set_size(struct ptr_ring *r, int size) +{ + r->size = size; + r->batch = PTR_RING_CACHE_BYTES * 2 / sizeof(*(r->queue)); + /* We need to set batch at least to 1 to make logic + * in __ptr_ring_discard_one work correctly. + * Batching too much (because ring is small) would cause a lot of + * burstiness. Needs tuning, for now disable batching. + */ + if (r->batch > r->size / 2 || !r->batch) + r->batch = 1; +} + +static inline int ptr_ring_init(struct ptr_ring *r, int size) +{ + r->queue = __ptr_ring_init_queue_alloc(size); + if (!r->queue) + return -ENOMEM; + + __ptr_ring_set_size(r, size); + r->producer = r->consumer_head = r->consumer_tail = 0; + qemu_spin_init(&r->producer_lock); + qemu_spin_init(&r->consumer_lock); + + return 0; +} + +/* + * Return entries into ring. Destroy entries that don't fit. + * + * Note: this is expected to be a rare slow path operation. + * + * Note: producer lock is nested within consumer lock, so if you + * resize you must make sure all uses nest correctly. + * In particular if you consume ring in interrupt or BH context, you must + * disable interrupts/BH when doing so. + */ +static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n, + void (*destroy)(void *)) +{ + int head; + + qemu_spin_lock(&r->consumer_lock); + qemu_spin_lock(&r->producer_lock); + + if (!r->size) + goto done; + + /* + * Clean out buffered entries (for simplicity). This way following code + * can test entries for NULL and if not assume they are valid. + */ + head = r->consumer_head - 1; + while (likely(head >= r->consumer_tail)) + r->queue[head--] = NULL; + r->consumer_tail = r->consumer_head; + + /* + * Go over entries in batch, start moving head back and copy entries. + * Stop when we run into previously unconsumed entries. + */ + while (n) { + head = r->consumer_head - 1; + if (head < 0) + head = r->size - 1; + if (r->queue[head]) { + /* This batch entry will have to be destroyed. */ + goto done; + } + r->queue[head] = batch[--n]; + r->consumer_tail = head; + /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ + PTR_RING_WRITE_ONCE(r->consumer_head, head); + } + +done: + /* Destroy all entries left in the batch. */ + while (n) + destroy(batch[--n]); + qemu_spin_unlock(&r->producer_lock); + qemu_spin_unlock(&r->consumer_lock); +} + +static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue, + int size, + void (*destroy)(void *)) +{ + int producer = 0; + void **old; + void *ptr; + + while ((ptr = __ptr_ring_consume(r))) + if (producer < size) + queue[producer++] = ptr; + else if (destroy) + destroy(ptr); + + __ptr_ring_set_size(r, size); + r->producer = producer; + r->consumer_head = 0; + r->consumer_tail = 0; + old = r->queue; + r->queue = queue; + + return old; +} + +/* + * Note: producer lock is nested within consumer lock, so if you + * resize you must make sure all uses nest correctly. + * In particular if you consume ring in interrupt or BH context, you must + * disable interrupts/BH when doing so. + */ +static inline int ptr_ring_resize(struct ptr_ring *r, int size, + void (*destroy)(void *)) +{ + void **queue = __ptr_ring_init_queue_alloc(size); + void **old; + + if (!queue) + return -ENOMEM; + + qemu_spin_lock(&(r)->consumer_lock); + qemu_spin_lock(&(r)->producer_lock); + + old = __ptr_ring_swap_queue(r, queue, size, destroy); + + qemu_spin_unlock(&(r)->producer_lock); + qemu_spin_unlock(&(r)->consumer_lock); + + g_free(old); + + return 0; +} + +/* + * Note: producer lock is nested within consumer lock, so if you + * resize you must make sure all uses nest correctly. + * In particular if you consume ring in interrupt or BH context, you must + * disable interrupts/BH when doing so. + */ +static inline int ptr_ring_resize_multiple(struct ptr_ring **rings, + unsigned int nrings, + int size, + void (*destroy)(void *)) +{ + void ***queues; + int i; + + queues = g_try_new(void **, nrings); + if (!queues) + goto noqueues; + + for (i = 0; i < nrings; ++i) { + queues[i] = __ptr_ring_init_queue_alloc(size); + if (!queues[i]) + goto nomem; + } + + for (i = 0; i < nrings; ++i) { + qemu_spin_lock(&(rings[i])->consumer_lock); + qemu_spin_lock(&(rings[i])->producer_lock); + queues[i] = __ptr_ring_swap_queue(rings[i], queues[i], + size, destroy); + qemu_spin_unlock(&(rings[i])->producer_lock); + qemu_spin_unlock(&(rings[i])->consumer_lock); + } + + for (i = 0; i < nrings; ++i) + g_free(queues[i]); + + g_free(queues); + + return 0; + +nomem: + while (--i >= 0) + g_free(queues[i]); + + g_free(queues); + +noqueues: + return -ENOMEM; +} + +static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *)) +{ + void *ptr; + + if (destroy) + while ((ptr = ptr_ring_consume(r))) + destroy(ptr); + g_free(r->queue); +} + +#endif /* _LINUX_PTR_RING_H */