Signed-off-by: Richard Henderson <richard.hender...@linaro.org> --- include/fpu/softfloat.h | 2 + fpu/softfloat.c | 356 +++++++++++++++++++++++++++++++++++++++- tests/fp/fp-test.c | 2 +- tests/fp/wrap.c.inc | 12 ++ 4 files changed, 370 insertions(+), 2 deletions(-)
diff --git a/include/fpu/softfloat.h b/include/fpu/softfloat.h index 78ad5ca738..a38433deb4 100644 --- a/include/fpu/softfloat.h +++ b/include/fpu/softfloat.h @@ -1196,6 +1196,8 @@ float128 float128_sub(float128, float128, float_status *status); float128 float128_mul(float128, float128, float_status *status); float128 float128_div(float128, float128, float_status *status); float128 float128_rem(float128, float128, float_status *status); +float128 float128_muladd(float128, float128, float128, int, + float_status *status); float128 float128_sqrt(float128, float_status *status); FloatRelation float128_compare(float128, float128, float_status *status); FloatRelation float128_compare_quiet(float128, float128, float_status *status); diff --git a/fpu/softfloat.c b/fpu/softfloat.c index e038434a07..5b714fbd82 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -512,11 +512,19 @@ static inline __attribute__((unused)) bool is_qnan(FloatClass c) typedef struct { uint64_t frac; - int32_t exp; + int32_t exp; FloatClass cls; bool sign; } FloatParts; +/* Similar for float128. */ +typedef struct { + uint64_t frac0, frac1; + int32_t exp; + FloatClass cls; + bool sign; +} FloatParts128; + #define DECOMPOSED_BINARY_POINT (64 - 2) #define DECOMPOSED_IMPLICIT_BIT (1ull << DECOMPOSED_BINARY_POINT) #define DECOMPOSED_OVERFLOW_BIT (DECOMPOSED_IMPLICIT_BIT << 1) @@ -4574,6 +4582,46 @@ static void } +/*---------------------------------------------------------------------------- +| Returns the parts of floating-point value `a'. +*----------------------------------------------------------------------------*/ + +static void float128_unpack(FloatParts128 *p, float128 a, float_status *status) +{ + p->sign = extractFloat128Sign(a); + p->exp = extractFloat128Exp(a); + p->frac0 = extractFloat128Frac0(a); + p->frac1 = extractFloat128Frac1(a); + + if (p->exp == 0) { + if ((p->frac0 | p->frac1) == 0) { + p->cls = float_class_zero; + } else if (status->flush_inputs_to_zero) { + float_raise(float_flag_input_denormal, status); + p->cls = float_class_zero; + p->frac0 = p->frac1 = 0; + } else { + normalizeFloat128Subnormal(p->frac0, p->frac1, &p->exp, + &p->frac0, &p->frac1); + p->exp -= 0x3fff; + p->cls = float_class_normal; + } + } else if (p->exp == 0x7fff) { + if ((p->frac0 | p->frac1) == 0) { + p->cls = float_class_inf; + } else if (float128_is_signaling_nan(a, status)) { + p->cls = float_class_snan; + } else { + p->cls = float_class_qnan; + } + } else { + /* Add the implicit bit. */ + p->frac0 |= UINT64_C(0x0001000000000000); + p->exp -= 0x3fff; + p->cls = float_class_normal; + } +} + /*---------------------------------------------------------------------------- | Packs the sign `zSign', the exponent `zExp', and the significand formed | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision @@ -7205,6 +7253,312 @@ float128 float128_mul(float128 a, float128 b, float_status *status) } +static void shortShift256Left(uint64_t p[4], unsigned count) +{ + int negcount = -count & 63; + + if (count == 0) { + return; + } + g_assert(count < 64); + p[0] = (p[0] << count) | (p[1] >> negcount); + p[1] = (p[1] << count) | (p[2] >> negcount); + p[2] = (p[2] << count) | (p[3] >> negcount); + p[3] = (p[3] << count); +} + +static void shift256RightJamming(uint64_t p[4], int count) +{ + uint64_t in = 0; + + g_assert(count >= 0); + + count = MIN(count, 256); + for (; count >= 64; count -= 64) { + in |= p[3]; + p[3] = p[2]; + p[2] = p[1]; + p[1] = p[0]; + p[0] = 0; + } + + if (count) { + int negcount = -count & 63; + + in |= p[3] << negcount; + p[3] = (p[2] << negcount) | (p[3] >> count); + p[2] = (p[1] << negcount) | (p[2] >> count); + p[1] = (p[0] << negcount) | (p[1] >> count); + p[0] = p[0] >> count; + } + p[3] |= (in != 0); +} + +/* R = A - B */ +static void sub256(uint64_t r[4], uint64_t a[4], uint64_t b[4]) +{ + bool borrow = false; + + for (int i = 3; i >= 0; --i) { + if (borrow) { + borrow = a[i] <= b[i]; + r[i] = a[i] - b[i] - 1; + } else { + borrow = a[i] < b[i]; + r[i] = a[i] - b[i]; + } + } +} + +/* A = -A */ +static void neg256(uint64_t a[4]) +{ + a[3] = -a[3]; + if (likely(a[3])) { + goto not2; + } + a[2] = -a[2]; + if (likely(a[2])) { + goto not1; + } + a[1] = -a[1]; + if (likely(a[1])) { + goto not0; + } + a[0] = -a[0]; + return; + not2: + a[2] = ~a[2]; + not1: + a[1] = ~a[1]; + not0: + a[0] = ~a[0]; +} + +/* A += B */ +static void add256(uint64_t a[4], uint64_t b[4]) +{ + bool carry = false; + + for (int i = 3; i >= 0; --i) { + uint64_t t = a[i] + b[i]; + if (carry) { + t += 1; + carry = t <= a[i]; + } else { + carry = t < a[i]; + } + a[i] = t; + } +} + +float128 float128_muladd(float128 a_f, float128 b_f, float128 c_f, + int flags, float_status *status) +{ + bool inf_zero, p_sign, sign_flip; + uint64_t p_frac[4]; + FloatParts128 a, b, c; + int p_exp, exp_diff, shift, ab_mask, abc_mask; + FloatClass p_cls; + + float128_unpack(&a, a_f, status); + float128_unpack(&b, b_f, status); + float128_unpack(&c, c_f, status); + + ab_mask = float_cmask(a.cls) | float_cmask(b.cls); + abc_mask = float_cmask(c.cls) | ab_mask; + inf_zero = ab_mask == float_cmask_infzero; + + /* If any input is a NaN, select the required result. */ + if (unlikely(abc_mask & float_cmask_anynan)) { + if (unlikely(abc_mask & float_cmask_snan)) { + float_raise(float_flag_invalid, status); + } + + int which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, status); + if (status->default_nan_mode) { + which = 3; + } + switch (which) { + case 0: + break; + case 1: + a_f = b_f; + a.cls = b.cls; + break; + case 2: + a_f = c_f; + a.cls = c.cls; + break; + case 3: + return float128_default_nan(status); + } + if (is_snan(a.cls)) { + return float128_silence_nan(a_f, status); + } + return a_f; + } + + /* After dealing with input NaNs, look for Inf * Zero. */ + if (unlikely(inf_zero)) { + float_raise(float_flag_invalid, status); + return float128_default_nan(status); + } + + p_sign = a.sign ^ b.sign; + + if (flags & float_muladd_negate_c) { + c.sign ^= 1; + } + if (flags & float_muladd_negate_product) { + p_sign ^= 1; + } + sign_flip = (flags & float_muladd_negate_result); + + if (ab_mask & float_cmask_inf) { + p_cls = float_class_inf; + } else if (ab_mask & float_cmask_zero) { + p_cls = float_class_zero; + } else { + p_cls = float_class_normal; + } + + if (c.cls == float_class_inf) { + if (p_cls == float_class_inf && p_sign != c.sign) { + /* +Inf + -Inf = NaN */ + float_raise(float_flag_invalid, status); + return float128_default_nan(status); + } + /* Inf + Inf = Inf of the proper sign; reuse the return below. */ + p_cls = float_class_inf; + p_sign = c.sign; + } + + if (p_cls == float_class_inf) { + return packFloat128(p_sign ^ sign_flip, 0x7fff, 0, 0); + } + + if (p_cls == float_class_zero) { + if (c.cls == float_class_zero) { + if (p_sign != c.sign) { + p_sign = status->float_rounding_mode == float_round_down; + } + return packFloat128(p_sign ^ sign_flip, 0, 0, 0); + } + + if (flags & float_muladd_halve_result) { + c.exp -= 1; + } + return roundAndPackFloat128(c.sign ^ sign_flip, + c.exp + 0x3fff - 1, + c.frac0, c.frac1, 0, status); + } + + /* a & b should be normals now... */ + assert(a.cls == float_class_normal && b.cls == float_class_normal); + + /* Multiply of 2 113-bit numbers produces a 226-bit result. */ + mul128To256(a.frac0, a.frac1, b.frac0, b.frac1, + &p_frac[0], &p_frac[1], &p_frac[2], &p_frac[3]); + + /* Realign the binary point at bit 48 of p_frac[0]. */ + shift = clz64(p_frac[0]) - 15; + g_assert(shift == 15 || shift == 16); + shortShift256Left(p_frac, shift); + p_exp = a.exp + b.exp - (shift - 16); + exp_diff = p_exp - c.exp; + + uint64_t c_frac[4] = { c.frac0, c.frac1, 0, 0 }; + + /* Add or subtract C from the intermediate product. */ + if (c.cls == float_class_zero) { + /* Fall through to rounding after addition (with zero). */ + } else if (p_sign != c.sign) { + /* Subtraction */ + if (exp_diff < 0) { + shift256RightJamming(p_frac, -exp_diff); + sub256(p_frac, c_frac, p_frac); + p_exp = c.exp; + p_sign ^= 1; + } else if (exp_diff > 0) { + shift256RightJamming(c_frac, exp_diff); + sub256(p_frac, p_frac, c_frac); + } else { + /* Low 128 bits of C are known to be zero. */ + sub128(p_frac[0], p_frac[1], c_frac[0], c_frac[1], + &p_frac[0], &p_frac[1]); + /* + * Since we have normalized to bit 48 of p_frac[0], + * a negative result means C > P and we need to invert. + */ + if ((int64_t)p_frac[0] < 0) { + neg256(p_frac); + p_sign ^= 1; + } + } + + /* + * Gross normalization of the 256-bit subtraction result. + * Fine tuning below shared with addition. + */ + if (p_frac[0] != 0) { + /* nothing to do */ + } else if (p_frac[1] != 0) { + p_exp -= 64; + p_frac[0] = p_frac[1]; + p_frac[1] = p_frac[2]; + p_frac[2] = p_frac[3]; + p_frac[3] = 0; + } else if (p_frac[2] != 0) { + p_exp -= 128; + p_frac[0] = p_frac[2]; + p_frac[1] = p_frac[3]; + p_frac[2] = 0; + p_frac[3] = 0; + } else if (p_frac[3] != 0) { + p_exp -= 192; + p_frac[0] = p_frac[3]; + p_frac[1] = 0; + p_frac[2] = 0; + p_frac[3] = 0; + } else { + /* Subtraction was exact: result is zero. */ + p_sign = status->float_rounding_mode == float_round_down; + return packFloat128(p_sign ^ sign_flip, 0, 0, 0); + } + } else { + /* Addition */ + if (exp_diff <= 0) { + shift256RightJamming(p_frac, -exp_diff); + /* Low 128 bits of C are known to be zero. */ + add128(p_frac[0], p_frac[1], c_frac[0], c_frac[1], + &p_frac[0], &p_frac[1]); + p_exp = c.exp; + } else { + shift256RightJamming(c_frac, exp_diff); + add256(p_frac, c_frac); + } + } + + /* Fine normalization of the 256-bit result: p_frac[0] != 0. */ + shift = clz64(p_frac[0]) - 15; + if (shift < 0) { + shift256RightJamming(p_frac, -shift); + } else if (shift > 0) { + shortShift256Left(p_frac, shift); + } + p_exp -= shift; + + if (flags & float_muladd_halve_result) { + p_exp -= 1; + } + return roundAndPackFloat128(p_sign ^ sign_flip, + p_exp + 0x3fff - 1, + p_frac[0], p_frac[1], + p_frac[2] | (p_frac[3] != 0), + status); +} + /*---------------------------------------------------------------------------- | Returns the result of dividing the quadruple-precision floating-point value | `a' by the corresponding value `b'. The operation is performed according to diff --git a/tests/fp/fp-test.c b/tests/fp/fp-test.c index 06ffebd6db..9bbb0dba67 100644 --- a/tests/fp/fp-test.c +++ b/tests/fp/fp-test.c @@ -717,7 +717,7 @@ static void do_testfloat(int op, int rmode, bool exact) test_abz_f128(true_abz_f128M, subj_abz_f128M); break; case F128_MULADD: - not_implemented(); + test_abcz_f128(slow_f128M_mulAdd, qemu_f128_mulAdd); break; case F128_SQRT: test_az_f128(slow_f128M_sqrt, qemu_f128M_sqrt); diff --git a/tests/fp/wrap.c.inc b/tests/fp/wrap.c.inc index 0cbd20013e..65a713deae 100644 --- a/tests/fp/wrap.c.inc +++ b/tests/fp/wrap.c.inc @@ -574,6 +574,18 @@ WRAP_MULADD(qemu_f32_mulAdd, float32_muladd, float32) WRAP_MULADD(qemu_f64_mulAdd, float64_muladd, float64) #undef WRAP_MULADD +static void qemu_f128_mulAdd(const float128_t *ap, const float128_t *bp, + const float128_t *cp, float128_t *res) +{ + float128 a, b, c, ret; + + a = soft_to_qemu128(*ap); + b = soft_to_qemu128(*bp); + c = soft_to_qemu128(*cp); + ret = float128_muladd(a, b, c, 0, &qsf); + *res = qemu_to_soft128(ret); +} + #define WRAP_CMP16(name, func, retcond) \ static bool name(float16_t a, float16_t b) \ { \ -- 2.25.1