Run the C preprocessor across the instruction definition files and macro
definition file to expand macros and prepare the semantics_generated.pyinc
file.  The resulting file contains one entry with the semantics for each
instruction and one line with the instruction attributes associated with
each macro.

Signed-off-by: Taylor Simpson <tsimp...@quicinc.com>
Reviewed-by: Philippe Mathieu-Daudé <f4...@amsat.org>
---
 target/hexagon/gen_semantics.c | 88 ++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 88 insertions(+)
 create mode 100644 target/hexagon/gen_semantics.c

diff --git a/target/hexagon/gen_semantics.c b/target/hexagon/gen_semantics.c
new file mode 100644
index 0000000..c5fccec
--- /dev/null
+++ b/target/hexagon/gen_semantics.c
@@ -0,0 +1,88 @@
+/*
+ *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights 
Reserved.
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ * This program generates the semantics file that is processed by
+ * the do_qemu.py script.  We use the C preporcessor to manipulate the
+ * files imported from the Hexagon architecture library.
+ */
+
+#include <stdio.h>
+#define STRINGIZE(X) #X
+
+int main(int argc, char *argv[])
+{
+    FILE *outfile;
+
+    if (argc != 2) {
+        fprintf(stderr, "Usage: gen_semantics ouptputfile\n");
+        return 1;
+    }
+    outfile = fopen(argv[1], "w");
+    if (outfile == NULL) {
+        fprintf(stderr, "Cannot open %s for writing\n", argv[1]);
+        return 1;
+    }
+
+/*
+ * Process the instruction definitions
+ *     Scalar core instructions have the following form
+ *         Q6INSN(A2_add,"Rd32=add(Rs32,Rt32)",ATTRIBS(),
+ *         "Add 32-bit registers",
+ *         { RdV=RsV+RtV;})
+ */
+#define Q6INSN(TAG, BEH, ATTRIBS, DESCR, SEM) \
+    do { \
+        fprintf(outfile, "SEMANTICS( \\\n" \
+                         "    \"%s\", \\\n" \
+                         "    %s, \\\n" \
+                         "    \"\"\"%s\"\"\" \\\n" \
+                         ")\n", \
+                #TAG, STRINGIZE(BEH), STRINGIZE(SEM)); \
+        fprintf(outfile, "ATTRIBUTES( \\\n" \
+                         "    \"%s\", \\\n" \
+                         "    \"%s\" \\\n" \
+                         ")\n", \
+                #TAG, STRINGIZE(ATTRIBS)); \
+    } while (0);
+#include "imported/allidefs.def"
+#undef Q6INSN
+
+/*
+ * Process the macro definitions
+ *     Macros definitions have the following form
+ *         DEF_MACRO(
+ *             fLSBNEW0,
+ *             predlog_read(thread,0),
+ *             ()
+ *         )
+ * The important part here is the attributes.  Whenever an instruction
+ * invokes a macro, we add the macro's attributes to the instruction.
+ */
+#define DEF_MACRO(MNAME, BEH, ATTRS) \
+    fprintf(outfile, "MACROATTRIB( \\\n" \
+                     "    \"%s\", \\\n" \
+                     "    \"\"\"%s\"\"\", \\\n" \
+                     "    \"%s\" \\\n" \
+                     ")\n", \
+            #MNAME, STRINGIZE(BEH), STRINGIZE(ATTRS));
+#include "imported/macros.def"
+#undef DEF_MACRO
+
+    fclose(outfile);
+    return 0;
+}
-- 
2.7.4

Reply via email to