Create ldst_atomicity.c.inc. Not required for user-only code loads, because we've ensured that the page is read-only before beginning to translate code.
Signed-off-by: Richard Henderson <richard.hender...@linaro.org> --- v5: Dropped r-b because of MO_ATOM_* reorg --- accel/tcg/cputlb.c | 175 +++++++--- accel/tcg/user-exec.c | 26 +- accel/tcg/ldst_atomicity.c.inc | 566 +++++++++++++++++++++++++++++++++ 3 files changed, 716 insertions(+), 51 deletions(-) create mode 100644 accel/tcg/ldst_atomicity.c.inc diff --git a/accel/tcg/cputlb.c b/accel/tcg/cputlb.c index 617777055a..33e75ae962 100644 --- a/accel/tcg/cputlb.c +++ b/accel/tcg/cputlb.c @@ -1668,6 +1668,9 @@ tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, return qemu_ram_addr_from_host_nofail(p); } +/* Load/store with atomicity primitives. */ +#include "ldst_atomicity.c.inc" + #ifdef CONFIG_PLUGIN /* * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. @@ -2035,35 +2038,7 @@ static void validate_memop(MemOpIdx oi, MemOp expected) * specifically for reading instructions from system memory. It is * called by the translation loop and in some helpers where the code * is disassembled. It shouldn't be called directly by guest code. - */ - -typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, - MemOpIdx oi, uintptr_t retaddr); - -static inline uint64_t QEMU_ALWAYS_INLINE -load_memop(const void *haddr, MemOp op) -{ - switch (op) { - case MO_UB: - return ldub_p(haddr); - case MO_BEUW: - return lduw_be_p(haddr); - case MO_LEUW: - return lduw_le_p(haddr); - case MO_BEUL: - return (uint32_t)ldl_be_p(haddr); - case MO_LEUL: - return (uint32_t)ldl_le_p(haddr); - case MO_BEUQ: - return ldq_be_p(haddr); - case MO_LEUQ: - return ldq_le_p(haddr); - default: - qemu_build_not_reached(); - } -} - -/* + * * For the benefit of TCG generated code, we want to avoid the * complication of ABI-specific return type promotion and always * return a value extended to the register size of the host. This is @@ -2119,17 +2094,139 @@ static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) return ret_be; } +/** + * do_ld_parts_beN + * @p: translation parameters + * @ret_be: accumulated data + * + * As do_ld_bytes_beN, but atomically on each aligned part. + */ +static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) +{ + void *haddr = p->haddr; + int size = p->size; + + do { + uint64_t x; + int n; + + /* + * Find minimum of alignment and size. + * This is slightly stronger than required by MO_ATOM_SUBALIGN, which + * would have only checked the low bits of addr|size once at the start, + * but is just as easy. + */ + switch (((uintptr_t)haddr | size) & 7) { + case 4: + x = cpu_to_be32(load_atomic4(haddr)); + ret_be = (ret_be << 32) | x; + n = 4; + break; + case 2: + case 6: + x = cpu_to_be16(load_atomic2(haddr)); + ret_be = (ret_be << 16) | x; + n = 2; + break; + default: + x = *(uint8_t *)haddr; + ret_be = (ret_be << 8) | x; + n = 1; + break; + case 0: + g_assert_not_reached(); + } + haddr += n; + size -= n; + } while (size != 0); + return ret_be; +} + +/** + * do_ld_parts_be4 + * @p: translation parameters + * @ret_be: accumulated data + * + * As do_ld_bytes_beN, but with one atomic load. + * Four aligned bytes are guaranteed to cover the load. + */ +static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) +{ + int o = p->addr & 3; + uint32_t x = load_atomic4(p->haddr - o); + + x = cpu_to_be32(x); + x <<= o * 8; + x >>= (4 - p->size) * 8; + return (ret_be << (p->size * 8)) | x; +} + +/** + * do_ld_parts_be8 + * @p: translation parameters + * @ret_be: accumulated data + * + * As do_ld_bytes_beN, but with one atomic load. + * Eight aligned bytes are guaranteed to cover the load. + */ +static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, + MMULookupPageData *p, uint64_t ret_be) +{ + int o = p->addr & 7; + uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); + + x = cpu_to_be64(x); + x <<= o * 8; + x >>= (8 - p->size) * 8; + return (ret_be << (p->size * 8)) | x; +} + /* * Wrapper for the above. */ static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, - uint64_t ret_be, int mmu_idx, - MMUAccessType type, uintptr_t ra) + uint64_t ret_be, int mmu_idx, MMUAccessType type, + MemOp mop, uintptr_t ra) { + MemOp atom; + unsigned tmp, half_size; + if (unlikely(p->flags & TLB_MMIO)) { return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra); - } else { + } + + /* + * It is a given that we cross a page and therefore there is no + * atomicity for the load as a whole, but subobjects may need attention. + */ + atom = mop & MO_ATOM_MASK; + switch (atom) { + case MO_ATOM_SUBALIGN: + return do_ld_parts_beN(p, ret_be); + + case MO_ATOM_IFALIGN_PAIR: + case MO_ATOM_WITHIN16_PAIR: + tmp = mop & MO_SIZE; + tmp = tmp ? tmp - 1 : 0; + half_size = 1 << tmp; + if (atom == MO_ATOM_IFALIGN_PAIR + ? p->size == half_size + : p->size >= half_size) { + if (!HAVE_al8_fast && p->size < 4) { + return do_ld_whole_be4(p, ret_be); + } else { + return do_ld_whole_be8(env, ra, p, ret_be); + } + } + /* fall through */ + + case MO_ATOM_IFALIGN: + case MO_ATOM_WITHIN16: + case MO_ATOM_NONE: return do_ld_bytes_beN(p, ret_be); + + default: + g_assert_not_reached(); } } @@ -2153,7 +2250,7 @@ static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, } /* Perform the load host endian, then swap if necessary. */ - ret = load_memop(p->haddr, MO_UW); + ret = load_atom_2(env, ra, p->haddr, memop); if (memop & MO_BSWAP) { ret = bswap16(ret); } @@ -2170,7 +2267,7 @@ static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, } /* Perform the load host endian. */ - ret = load_memop(p->haddr, MO_UL); + ret = load_atom_4(env, ra, p->haddr, memop); if (memop & MO_BSWAP) { ret = bswap32(ret); } @@ -2187,7 +2284,7 @@ static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, } /* Perform the load host endian. */ - ret = load_memop(p->haddr, MO_UQ); + ret = load_atom_8(env, ra, p->haddr, memop); if (memop & MO_BSWAP) { ret = bswap64(ret); } @@ -2263,8 +2360,8 @@ static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); } - ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, ra); - ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, ra); + ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); + ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); if ((l.memop & MO_BSWAP) == MO_LE) { ret = bswap32(ret); } @@ -2297,8 +2394,8 @@ static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); } - ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, ra); - ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, ra); + ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); + ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); if ((l.memop & MO_BSWAP) == MO_LE) { ret = bswap64(ret); } diff --git a/accel/tcg/user-exec.c b/accel/tcg/user-exec.c index fc597a010d..fefc83cc8c 100644 --- a/accel/tcg/user-exec.c +++ b/accel/tcg/user-exec.c @@ -931,6 +931,8 @@ static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr, return ret; } +#include "ldst_atomicity.c.inc" + uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { @@ -953,10 +955,10 @@ uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, validate_memop(oi, MO_BEUW); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); - ret = lduw_be_p(haddr); + ret = load_atom_2(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); - return ret; + return cpu_to_be16(ret); } uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, @@ -967,10 +969,10 @@ uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, validate_memop(oi, MO_BEUL); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); - ret = ldl_be_p(haddr); + ret = load_atom_4(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); - return ret; + return cpu_to_be32(ret); } uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, @@ -981,10 +983,10 @@ uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, validate_memop(oi, MO_BEUQ); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); - ret = ldq_be_p(haddr); + ret = load_atom_8(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); - return ret; + return cpu_to_be64(ret); } uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, @@ -995,10 +997,10 @@ uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, validate_memop(oi, MO_LEUW); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); - ret = lduw_le_p(haddr); + ret = load_atom_2(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); - return ret; + return cpu_to_le16(ret); } uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, @@ -1009,10 +1011,10 @@ uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, validate_memop(oi, MO_LEUL); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); - ret = ldl_le_p(haddr); + ret = load_atom_4(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); - return ret; + return cpu_to_le32(ret); } uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, @@ -1023,10 +1025,10 @@ uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, validate_memop(oi, MO_LEUQ); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); - ret = ldq_le_p(haddr); + ret = load_atom_8(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); - return ret; + return cpu_to_le64(ret); } Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr, diff --git a/accel/tcg/ldst_atomicity.c.inc b/accel/tcg/ldst_atomicity.c.inc new file mode 100644 index 0000000000..c5790b2ec9 --- /dev/null +++ b/accel/tcg/ldst_atomicity.c.inc @@ -0,0 +1,566 @@ +/* + * Routines common to user and system emulation of load/store. + * + * Copyright (c) 2022 Linaro, Ltd. + * + * SPDX-License-Identifier: GPL-2.0-or-later + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ + +#ifdef CONFIG_ATOMIC64 +# define HAVE_al8 true +#else +# define HAVE_al8 false +#endif +#define HAVE_al8_fast (ATOMIC_REG_SIZE >= 8) + +#if defined(CONFIG_ATOMIC128) +# define HAVE_al16_fast true +#else +# define HAVE_al16_fast false +#endif + +/** + * required_atomicity: + * + * Return the lg2 bytes of atomicity required by @memop for @p. + * If the operation must be split into two operations to be + * examined separately for atomicity, return -lg2. + */ +static int required_atomicity(CPUArchState *env, uintptr_t p, MemOp memop) +{ + MemOp atom = memop & MO_ATOM_MASK; + MemOp size = memop & MO_SIZE; + MemOp half = size ? size - 1 : 0; + unsigned tmp; + int atmax; + + switch (atom) { + case MO_ATOM_NONE: + atmax = MO_8; + break; + + case MO_ATOM_IFALIGN_PAIR: + size = half; + /* fall through */ + + case MO_ATOM_IFALIGN: + tmp = (1 << size) - 1; + atmax = p & tmp ? MO_8 : size; + break; + + case MO_ATOM_WITHIN16: + tmp = p & 15; + atmax = (tmp + (1 << size) <= 16 ? size : MO_8); + break; + + case MO_ATOM_WITHIN16_PAIR: + tmp = p & 15; + if (tmp + (1 << size) <= 16) { + atmax = size; + } else if (tmp + (1 << half) == 16) { + /* + * The pair exactly straddles the boundary. + * Both halves are naturally aligned and atomic. + */ + atmax = half; + } else { + /* + * One of the pair crosses the boundary, and is non-atomic. + * The other of the pair does not cross, and is atomic. + */ + atmax = -half; + } + break; + + case MO_ATOM_SUBALIGN: + /* + * Examine the alignment of p to determine if there are subobjects + * that must be aligned. Note that we only really need ctz4() -- + * any more sigificant bits are discarded by the immediately + * following comparison. + */ + tmp = ctz32(p); + atmax = MIN(size, tmp); + break; + + default: + g_assert_not_reached(); + } + + /* + * Here we have the architectural atomicity of the operation. + * However, when executing in a serial context, we need no extra + * host atomicity in order to avoid racing. This reduction + * avoids looping with cpu_loop_exit_atomic. + */ + if (cpu_in_serial_context(env_cpu(env))) { + return MO_8; + } + return atmax; +} + +/** + * load_atomic2: + * @pv: host address + * + * Atomically load 2 aligned bytes from @pv. + */ +static inline uint16_t load_atomic2(void *pv) +{ + uint16_t *p = __builtin_assume_aligned(pv, 2); + return qatomic_read(p); +} + +/** + * load_atomic4: + * @pv: host address + * + * Atomically load 4 aligned bytes from @pv. + */ +static inline uint32_t load_atomic4(void *pv) +{ + uint32_t *p = __builtin_assume_aligned(pv, 4); + return qatomic_read(p); +} + +/** + * load_atomic8: + * @pv: host address + * + * Atomically load 8 aligned bytes from @pv. + */ +static inline uint64_t load_atomic8(void *pv) +{ + uint64_t *p = __builtin_assume_aligned(pv, 8); + + qemu_build_assert(HAVE_al8); + return qatomic_read__nocheck(p); +} + +/** + * load_atomic16: + * @pv: host address + * + * Atomically load 16 aligned bytes from @pv. + */ +static inline Int128 load_atomic16(void *pv) +{ +#ifdef CONFIG_ATOMIC128 + __uint128_t *p = __builtin_assume_aligned(pv, 16); + Int128Alias r; + + r.u = qatomic_read__nocheck(p); + return r.s; +#else + qemu_build_not_reached(); +#endif +} + +/** + * load_atomic8_or_exit: + * @env: cpu context + * @ra: host unwind address + * @pv: host address + * + * Atomically load 8 aligned bytes from @pv. + * If this is not possible, longjmp out to restart serially. + */ +static uint64_t load_atomic8_or_exit(CPUArchState *env, uintptr_t ra, void *pv) +{ + if (HAVE_al8) { + return load_atomic8(pv); + } + +#ifdef CONFIG_USER_ONLY + /* + * If the page is not writable, then assume the value is immutable + * and requires no locking. This ignores the case of MAP_SHARED with + * another process, because the fallback start_exclusive solution + * provides no protection across processes. + */ + if (!page_check_range(h2g(pv), 8, PAGE_WRITE)) { + uint64_t *p = __builtin_assume_aligned(pv, 8); + return *p; + } +#endif + + /* Ultimate fallback: re-execute in serial context. */ + cpu_loop_exit_atomic(env_cpu(env), ra); +} + +/** + * load_atomic16_or_exit: + * @env: cpu context + * @ra: host unwind address + * @pv: host address + * + * Atomically load 16 aligned bytes from @pv. + * If this is not possible, longjmp out to restart serially. + */ +static Int128 load_atomic16_or_exit(CPUArchState *env, uintptr_t ra, void *pv) +{ + Int128 *p = __builtin_assume_aligned(pv, 16); + + if (HAVE_al16_fast) { + return load_atomic16(p); + } + +#ifdef CONFIG_USER_ONLY + /* + * We can only use cmpxchg to emulate a load if the page is writable. + * If the page is not writable, then assume the value is immutable + * and requires no locking. This ignores the case of MAP_SHARED with + * another process, because the fallback start_exclusive solution + * provides no protection across processes. + */ + if (!page_check_range(h2g(p), 16, PAGE_WRITE)) { + return *p; + } +#endif + + /* + * In system mode all guest pages are writable, and for user-only + * we have just checked writability. Try cmpxchg. + */ +#if defined(CONFIG_CMPXCHG128) + /* Swap 0 with 0, with the side-effect of returning the old value. */ + { + Int128Alias r; + r.u = __sync_val_compare_and_swap_16((__uint128_t *)p, 0, 0); + return r.s; + } +#endif + + /* Ultimate fallback: re-execute in serial context. */ + cpu_loop_exit_atomic(env_cpu(env), ra); +} + +/** + * load_atom_extract_al4x2: + * @pv: host address + * + * Load 4 bytes from @p, from two sequential atomic 4-byte loads. + */ +static uint32_t load_atom_extract_al4x2(void *pv) +{ + uintptr_t pi = (uintptr_t)pv; + int sh = (pi & 3) * 8; + uint32_t a, b; + + pv = (void *)(pi & ~3); + a = load_atomic4(pv); + b = load_atomic4(pv + 4); + + if (HOST_BIG_ENDIAN) { + return (a << sh) | (b >> (-sh & 31)); + } else { + return (a >> sh) | (b << (-sh & 31)); + } +} + +/** + * load_atom_extract_al8x2: + * @pv: host address + * + * Load 8 bytes from @p, from two sequential atomic 8-byte loads. + */ +static uint64_t load_atom_extract_al8x2(void *pv) +{ + uintptr_t pi = (uintptr_t)pv; + int sh = (pi & 7) * 8; + uint64_t a, b; + + pv = (void *)(pi & ~7); + a = load_atomic8(pv); + b = load_atomic8(pv + 8); + + if (HOST_BIG_ENDIAN) { + return (a << sh) | (b >> (-sh & 63)); + } else { + return (a >> sh) | (b << (-sh & 63)); + } +} + +/** + * load_atom_extract_al8_or_exit: + * @env: cpu context + * @ra: host unwind address + * @pv: host address + * @s: object size in bytes, @s <= 4. + * + * Atomically load @s bytes from @p, when p % s != 0, and [p, p+s-1] does + * not cross an 8-byte boundary. This means that we can perform an atomic + * 8-byte load and extract. + * The value is returned in the low bits of a uint32_t. + */ +static uint32_t load_atom_extract_al8_or_exit(CPUArchState *env, uintptr_t ra, + void *pv, int s) +{ + uintptr_t pi = (uintptr_t)pv; + int o = pi & 7; + int shr = (HOST_BIG_ENDIAN ? 8 - s - o : o) * 8; + + pv = (void *)(pi & ~7); + return load_atomic8_or_exit(env, ra, pv) >> shr; +} + +/** + * load_atom_extract_al16_or_exit: + * @env: cpu context + * @ra: host unwind address + * @p: host address + * @s: object size in bytes, @s <= 8. + * + * Atomically load @s bytes from @p, when p % 16 < 8 + * and p % 16 + s > 8. I.e. does not cross a 16-byte + * boundary, but *does* cross an 8-byte boundary. + * This is the slow version, so we must have eliminated + * any faster load_atom_extract_al8_or_exit case. + * + * If this is not possible, longjmp out to restart serially. + */ +static uint64_t load_atom_extract_al16_or_exit(CPUArchState *env, uintptr_t ra, + void *pv, int s) +{ + uintptr_t pi = (uintptr_t)pv; + int o = pi & 7; + int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8; + Int128 r; + + /* + * Note constraints above: p & 8 must be clear. + * Provoke SIGBUS if possible otherwise. + */ + pv = (void *)(pi & ~7); + r = load_atomic16_or_exit(env, ra, pv); + + r = int128_urshift(r, shr); + return int128_getlo(r); +} + +/** + * load_atom_extract_al16_or_al8: + * @p: host address + * @s: object size in bytes, @s <= 8. + * + * Load @s bytes from @p, when p % s != 0. If [p, p+s-1] does not + * cross an 16-byte boundary then the access must be 16-byte atomic, + * otherwise the access must be 8-byte atomic. + */ +static inline uint64_t load_atom_extract_al16_or_al8(void *pv, int s) +{ +#if defined(CONFIG_ATOMIC128) + uintptr_t pi = (uintptr_t)pv; + int o = pi & 7; + int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8; + __uint128_t r; + + pv = (void *)(pi & ~7); + if (pi & 8) { + uint64_t *p8 = __builtin_assume_aligned(pv, 16, 8); + uint64_t a = qatomic_read__nocheck(p8); + uint64_t b = qatomic_read__nocheck(p8 + 1); + + if (HOST_BIG_ENDIAN) { + r = ((__uint128_t)a << 64) | b; + } else { + r = ((__uint128_t)b << 64) | a; + } + } else { + __uint128_t *p16 = __builtin_assume_aligned(pv, 16, 0); + r = qatomic_read__nocheck(p16); + } + return r >> shr; +#else + qemu_build_not_reached(); +#endif +} + +/** + * load_atom_4_by_2: + * @pv: host address + * + * Load 4 bytes from @pv, with two 2-byte atomic loads. + */ +static inline uint32_t load_atom_4_by_2(void *pv) +{ + uint32_t a = load_atomic2(pv); + uint32_t b = load_atomic2(pv + 2); + + if (HOST_BIG_ENDIAN) { + return (a << 16) | b; + } else { + return (b << 16) | a; + } +} + +/** + * load_atom_8_by_2: + * @pv: host address + * + * Load 8 bytes from @pv, with four 2-byte atomic loads. + */ +static inline uint64_t load_atom_8_by_2(void *pv) +{ + uint32_t a = load_atom_4_by_2(pv); + uint32_t b = load_atom_4_by_2(pv + 4); + + if (HOST_BIG_ENDIAN) { + return ((uint64_t)a << 32) | b; + } else { + return ((uint64_t)b << 32) | a; + } +} + +/** + * load_atom_8_by_4: + * @pv: host address + * + * Load 8 bytes from @pv, with two 4-byte atomic loads. + */ +static inline uint64_t load_atom_8_by_4(void *pv) +{ + uint32_t a = load_atomic4(pv); + uint32_t b = load_atomic4(pv + 4); + + if (HOST_BIG_ENDIAN) { + return ((uint64_t)a << 32) | b; + } else { + return ((uint64_t)b << 32) | a; + } +} + +/** + * load_atom_2: + * @p: host address + * @memop: the full memory op + * + * Load 2 bytes from @p, honoring the atomicity of @memop. + */ +static uint16_t load_atom_2(CPUArchState *env, uintptr_t ra, + void *pv, MemOp memop) +{ + uintptr_t pi = (uintptr_t)pv; + int atmax; + + if (likely((pi & 1) == 0)) { + return load_atomic2(pv); + } + if (HAVE_al16_fast) { + return load_atom_extract_al16_or_al8(pv, 2); + } + + atmax = required_atomicity(env, pi, memop); + switch (atmax) { + case MO_8: + return lduw_he_p(pv); + case MO_16: + /* The only case remaining is MO_ATOM_WITHIN16. */ + if (!HAVE_al8_fast && (pi & 3) == 1) { + /* Big or little endian, we want the middle two bytes. */ + return load_atomic4(pv - 1) >> 8; + } + if (unlikely((pi & 15) != 7)) { + return load_atom_extract_al8_or_exit(env, ra, pv, 2); + } + return load_atom_extract_al16_or_exit(env, ra, pv, 2); + default: + g_assert_not_reached(); + } +} + +/** + * load_atom_4: + * @p: host address + * @memop: the full memory op + * + * Load 4 bytes from @p, honoring the atomicity of @memop. + */ +static uint32_t load_atom_4(CPUArchState *env, uintptr_t ra, + void *pv, MemOp memop) +{ + uintptr_t pi = (uintptr_t)pv; + int atmax; + + if (likely((pi & 3) == 0)) { + return load_atomic4(pv); + } + if (HAVE_al16_fast) { + return load_atom_extract_al16_or_al8(pv, 4); + } + + atmax = required_atomicity(env, pi, memop); + switch (atmax) { + case MO_8: + case MO_16: + case -MO_16: + /* + * For MO_ATOM_IFALIGN, this is more atomicity than required, + * but it's trivially supported on all hosts, better than 4 + * individual byte loads (when the host requires alignment), + * and overlaps with the MO_ATOM_SUBALIGN case of p % 2 == 0. + */ + return load_atom_extract_al4x2(pv); + case MO_32: + if (!(pi & 4)) { + return load_atom_extract_al8_or_exit(env, ra, pv, 4); + } + return load_atom_extract_al16_or_exit(env, ra, pv, 4); + default: + g_assert_not_reached(); + } +} + +/** + * load_atom_8: + * @p: host address + * @memop: the full memory op + * + * Load 8 bytes from @p, honoring the atomicity of @memop. + */ +static uint64_t load_atom_8(CPUArchState *env, uintptr_t ra, + void *pv, MemOp memop) +{ + uintptr_t pi = (uintptr_t)pv; + int atmax; + + /* + * If the host does not support 8-byte atomics, wait until we have + * examined the atomicity parameters below. + */ + if (HAVE_al8 && likely((pi & 7) == 0)) { + return load_atomic8(pv); + } + if (HAVE_al16_fast) { + return load_atom_extract_al16_or_al8(pv, 8); + } + + atmax = required_atomicity(env, pi, memop); + if (atmax == MO_64) { + if (!HAVE_al8 && (pi & 7) == 0) { + load_atomic8_or_exit(env, ra, pv); + } + return load_atom_extract_al16_or_exit(env, ra, pv, 8); + } + if (HAVE_al8_fast) { + return load_atom_extract_al8x2(pv); + } + switch (atmax) { + case MO_8: + return ldq_he_p(pv); + case MO_16: + return load_atom_8_by_2(pv); + case MO_32: + return load_atom_8_by_4(pv); + case -MO_32: + if (HAVE_al8) { + return load_atom_extract_al8x2(pv); + } + cpu_loop_exit_atomic(env_cpu(env), ra); + default: + g_assert_not_reached(); + } +} -- 2.34.1