Which is why I said it applies when the system is "diagonalizable". It won't work for non-diagonalizable matrix A, because T (eigenvector matrix) is singular.
Ravi. ________________________________________ From: peter dalgaard [pda...@gmail.com] Sent: Thursday, August 18, 2011 6:37 PM To: Ravi Varadhan Cc: 'cbe...@tajo.ucsd.edu'; r-de...@stat.math.ethz.ch; 'nas...@uottawa.ca' Subject: Re: [Rd] An example of very slow computation On Aug 17, 2011, at 23:24 , Ravi Varadhan wrote: > A principled way to solve this system of ODEs is to use the idea of > "fundamental matrix", which is the same idea as that of diagonalization of a > matrix (see Boyce and DiPrima or any ODE text). > > Here is the code for that: > > > nlogL2 <- function(theta){ > k <- exp(theta[1:3]) > sigma <- exp(theta[4]) > A <- rbind( > c(-k[1], k[2]), > c( k[1], -(k[2]+k[3])) > ) > eA <- eigen(A) > T <- eA$vectors > r <- eA$values > x0 <- c(0,100) > Tx0 <- T %*% x0 > > sol <- function(t) 100 - sum(T %*% diag(exp(r*t)) %*% Tx0) > pred <- sapply(dat[,1], sol) > -sum(dnorm(dat[,2], mean=pred, sd=sigma, log=TRUE)) > } > This is much faster than using expm(A*t), but much slower than "by hand" > calculations since we have to repeatedly do the diagonalization. An obvious > advantage of this fuunction is that it applies to *any* linear system of ODEs > for which the eigenvalues are real (and negative). I believe this is method 14 of the "19 dubious ways..." (Google for it) and doesn't work for certain non-symmetric A matrices. > > Ravi. > > ------------------------------------------------------- > Ravi Varadhan, Ph.D. > Assistant Professor, > Division of Geriatric Medicine and Gerontology School of Medicine Johns > Hopkins University > > Ph. (410) 502-2619 > email: rvarad...@jhmi.edu > > > -----Original Message----- > From: r-devel-boun...@r-project.org [mailto:r-devel-boun...@r-project.org] On > Behalf Of Ravi Varadhan > Sent: Wednesday, August 17, 2011 2:33 PM > To: 'cbe...@tajo.ucsd.edu'; r-de...@stat.math.ethz.ch; 'nas...@uottawa.ca' > Subject: Re: [Rd] An example of very slow computation > > Yes, the culprit is the evaluation of expm(A*t). This is a lazy way of > solving the system of ODEs, where you save analytic effort, but you pay for > it dearly in terms of computational effort! > > Even in this lazy approach, I am sure there ought to be faster ways to > evaluating exponent of a matrix than that in "Matrix" package. > > Ravi. > > ------------------------------------------------------- > Ravi Varadhan, Ph.D. > Assistant Professor, > Division of Geriatric Medicine and Gerontology School of Medicine Johns > Hopkins University > > Ph. (410) 502-2619 > email: rvarad...@jhmi.edu > > -----Original Message----- > From: r-devel-boun...@r-project.org [mailto:r-devel-boun...@r-project.org] On > Behalf Of cbe...@tajo.ucsd.edu > Sent: Wednesday, August 17, 2011 1:08 PM > To: r-de...@stat.math.ethz.ch > Subject: Re: [Rd] An example of very slow computation > > John C Nash <nas...@uottawa.ca> writes: > >> This message is about a curious difference in timing between two ways of >> computing the >> same function. One uses expm, so is expected to be a bit slower, but "a bit" >> turned out to >> be a factor of >1000. The code is below. We would be grateful if anyone can >> point out any >> egregious bad practice in our code, or enlighten us on why one approach is >> so much slower >> than the other. > > Looks like A*t in expm(A*t) is a "matrix". > > 'getMethod("expm","matrix")' coerces it arg to a "Matrix", then calls > expm(), whose method coerces its arg to a "dMatrix" and calls expm(), > whose method coerces its arg to a 'dgeMatrix' and calls expm(), whose > method finally calls '.Call(dgeMatrix_exp, x)' > > Whew! > > The time difference between 'expm( diag(10)+1 )' and 'expm( as( diag(10)+1, > "dgeMatrix" ))' is a factor of 10 on my box. > > Dunno 'bout the other factor of 100. > > Chuck > > > > >> The problem arose in an activity to develop guidelines for nonlinear >> modeling in ecology (at NCEAS, Santa Barbara, with worldwide participants), >> and we will be >> trying to include suggestions of how to prepare problems like this for >> efficient and >> effective solution. The code for nlogL was the "original" from the worker >> who supplied the >> problem. >> >> Best, >> >> John Nash >> >> -------------------------------------------------------------------------------------- >> >> cat("mineral-timing.R == benchmark MIN functions in R\n") >> # J C Nash July 31, 2011 >> >> require("microbenchmark") >> require("numDeriv") >> library(Matrix) >> library(optimx) >> # dat<-read.table('min.dat', skip=3, header=FALSE) >> # t<-dat[,1] >> t <- c(0.77, 1.69, 2.69, 3.67, 4.69, 5.71, 7.94, 9.67, 11.77, 17.77, >> 23.77, 32.77, 40.73, 47.75, 54.90, 62.81, 72.88, 98.77, 125.92, 160.19, >> 191.15, 223.78, 287.70, 340.01, 340.95, 342.01) >> >> # y<-dat[,2] # ?? tidy up >> y<- c(1.396, 3.784, 5.948, 7.717, 9.077, 10.100, 11.263, 11.856, 12.251, >> 12.699, >> 12.869, 13.048, 13.222, 13.347, 13.507, 13.628, 13.804, 14.087, 14.185, >> 14.351, >> 14.458, 14.756, 15.262, 15.703, 15.703, 15.703) >> >> >> ones<-rep(1,length(t)) >> theta<-c(-2,-2,-2,-2) >> >> >> nlogL<-function(theta){ >> k<-exp(theta[1:3]) >> sigma<-exp(theta[4]) >> A<-rbind( >> c(-k[1], k[2]), >> c( k[1], -(k[2]+k[3])) >> ) >> x0<-c(0,100) >> sol<-function(t)100-sum(expm(A*t)%*%x0) >> pred<-sapply(dat[,1],sol) >> -sum(dnorm(dat[,2],mean=pred,sd=sigma, log=TRUE)) >> } >> >> getpred<-function(theta, t){ >> k<-exp(theta[1:3]) >> sigma<-exp(theta[4]) >> A<-rbind( >> c(-k[1], k[2]), >> c( k[1], -(k[2]+k[3])) >> ) >> x0<-c(0,100) >> sol<-function(tt)100-sum(expm(A*tt)%*%x0) >> pred<-sapply(t,sol) >> } >> >> Mpred <- function(theta) { >> # WARNING: assumes t global >> kvec<-exp(theta[1:3]) >> k1<-kvec[1] >> k2<-kvec[2] >> k3<-kvec[3] >> # MIN problem terbuthylazene disappearance >> z<-k1+k2+k3 >> y<-z*z-4*k1*k3 >> l1<-0.5*(-z+sqrt(y)) >> l2<-0.5*(-z-sqrt(y)) >> val<-100*(1-((k1+k2+l2)*exp(l2*t)-(k1+k2+l1)*exp(l1*t))/(l2-l1)) >> } # val should be a vector if t is a vector >> >> negll <- function(theta){ >> # non expm version JN 110731 >> pred<-Mpred(theta) >> sigma<-exp(theta[4]) >> -sum(dnorm(dat[,2],mean=pred,sd=sigma, log=TRUE)) >> } >> >> theta<-rep(-2,4) >> fand<-nlogL(theta) >> fsim<-negll(theta) >> cat("Check fn vals: expm =",fand," simple=",fsim," diff=",fand-fsim,"\n") >> >> cat("time the function in expm form\n") >> tnlogL<-microbenchmark(nlogL(theta), times=100L) >> tnlogL >> >> cat("time the function in simpler form\n") >> tnegll<-microbenchmark(negll(theta), times=100L) >> tnegll >> >> ftimes<-data.frame(texpm=tnlogL$time, tsimp=tnegll$time) >> # ftimes >> >> >> boxplot(log(ftimes)) >> title("Log times in nanoseconds for matrix exponential and simple MIN fn") >> > > -- > Charles C. Berry cbe...@tajo.ucsd.edu > > ______________________________________________ > R-devel@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-devel > > ______________________________________________ > R-devel@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-devel > > ______________________________________________ > R-devel@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-devel -- Peter Dalgaard, Professor, Center for Statistics, Copenhagen Business School Solbjerg Plads 3, 2000 Frederiksberg, Denmark Phone: (+45)38153501 Email: pd....@cbs.dk Priv: pda...@gmail.com "Døden skal tape!" --- Nordahl Grieg ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel