Hello everyone.  I want to thank you for your response.

I tried this on weekend to attack my problem:


1)  Turned into factors all my variables to tabulate:

        infec1<-bamas$P2_A
        infec2<-bamas$P2_B
        infec3<-bamas$P2_C
        aglomera<-bamas$QCL_1

        Where bamas is my data frame, P2_A, P2_B and P2_C the infections and 
QCL_1
the clusters.

2)  Defined a table for each one of the variables I wanted:

        t1<-table(infec1,aglomera)
        t2<-table(infec2,aglomera)
        t3<-table(infec3,aglomera)

3)  Tables generated above are of n1 x 4, n2 x 4, n3 x 4 where n1, n2 and n3
are different and so the dimmensions of my matrices, then if I want to sum
the three tables R showed me the error that they were of
     different dimmensions, so I decided to make them of the same
dimmensions by "filling the holes" (missing rows) with zeros of each row in
each  table in order to transform them into a matrix of N x 4:

     For example, comparing my table t1 with t2, I could see that, in table
1 there where missing rows 7, 10, 12 and 13, and in the case of t3 rows 7
and 12 ;

t1

        aglomera
infec1   1   2   3   4
    1  117  88  76  83
    2   10  10   9   7
    3   15  11  14  14
    4    2   0   1   1
    5    2   3   1   0
    6    1   0   1   0
    8    3   3   0   1
    9    3   1   1   0
    11   0   0   1   1

t3

      aglomera
infec2  1  2  3  4
    1  12  9  6  6
    2  37 45 33 37
    3  11 11  8 11
    4   3  0  0  2
    5   2  1  0  0
    6   0  0  0  1
    8   3  1  2  2
    9   2  2  0  2
    10  1  1  2  1
    11  1  0  0  0
    13  0  0  1  0

Then I did the following instructions

        u<-cbind(0,0,0,0)
        rt1<-rbind(t1[1:6,],u,t1[7:8,],u,t1[9,],u,u)

        rt2<-rbind(t2[1:6,],u,t2[7:10,],u,u,t2[11,])

        rt3<-rbind(t3[1:6,],u,t3[7:10,],u,u)

4) Now all my tables are 13 x 4 so I defined as matrix:

        mrt1<-matrix(rt1,nrow=13,ncol=4)
        mrt2<-matrix(rt2,nrow=13,ncol=4)
        mrt3<-matrix(rt2,nrow=13,ncol=4)

5) And then I added them:

        total<-mrt1+mrt2+mrt3
        total

      [,1] [,2] [,3] [,4]
 [1,]  130   97   83   89
 [2,]   53   55   42   46
 [3,]   33   36   36   39
 [4,]    5    1    2    3
 [5,]    5    4    1    0
 [6,]    1    1    1    3
 [7,]    0    0    0    0
 [8,]    8    6    4    4
 [9,]    6    4    1    2
[10,]    1    2    2    3
[11,]    1    1    1    1
[12,]    0    0    0    0
[13,]    0    0    1    0

which is the result I wanted.

I don't know if this is the best way to make this kind of tables, but at
least it worked well on weekend late at night :P

If someone have a better (faster) way to make them please help me.

Warm regards from Mexico.



-----Mensaje original-----
De: Petr PIKAL [mailto:[EMAIL PROTECTED]
Enviado el: Lunes, 03 de Diciembre de 2007 02:30 a.m.
Para: [EMAIL PROTECTED]
CC: r-help@r-project.org
Asunto: Re: [R] Help with tables


Hi

I am not sure but if I remember correctly I had seen similar output in
Frank Harrel's book. So you could check some function from Hmisc package,
probably summarize.

Regards

Petr
[EMAIL PROTECTED]

[EMAIL PROTECTED] napsal dne 02.12.2007 03:16:09:

> I guess you can get the result by
> 1) concatenating all the variables (P2_A, P2_B, P2_C) into one variable
,
> 2) replicating segment membership properly,
> 3) make the table of 1) and 2)
>
> For example, the following may do the job.
>
> > ## (1) Generate data set
> > # Set random seed
> > set.seed(0)
> >
> > n.obs <- 15 # Number of patients
> > disease.lv  <- 1:10 ## different types of disease
> > data1 <- as.data.frame(t(replicate(n.obs, sample(disease.lv, 3)))) #
> Create data set
> > ## Create segment membership
> > segment <- sample(LETTERS[1:3], n.obs, replace=TRUE)
> >
> > cbind(data1, segment)
>    V1 V2 V3 segment
> 1   9  3 10       B
> 2   6  9  2       C
> 3   9 10  6       A
> 4   7  1  2       B
> 5   2  7  4       C
> 6   8  5  6       C
> 7  10  4  7       B
> 8  10  2  6       C
> 9   2  3  4       B
> 10  1  4  7       A
> 11  4  5  9       A
> 12  5  2  7       A
> 13  7  8  1       A
> 14  8  4  7       B
> 15  7  8  5       B
> >
> >
> > ## (2) Table
> > infec.all <- unlist(data1) # Concatenate all variables into one
variable
> > segment.all <- rep(segment, ncol(data1)) # Replicate the segment
> membership as necessary
> > table(infec.all, segment.all)
>          segment.all
> infec.all A B C
>        1  2 1 0
>        2  1 2 3
>        3  0 2 0
>        4  2 3 1
>        5  2 1 1
>        6  1 0 3
>        7  3 4 1
>        8  1 2 1
>        9  2 1 1
>        10 1 2 1
>
>
>
> On Nov 30, 2007 10:10 AM, Alejandro Rodríguez
<[EMAIL PROTECTED]>
> wrote:
>
> > Hello,  I'm new using R and developing tables.
> >
> > I have a problem in developing a table.  In a questionaire I made I
ask
> > this
> > question "Please tell me the first three sympthoms caused by
Respiratory
> > tract infection you've caught this year", then the people answer three
> > sympthoms, the first mention (Top of mind) is saved in a variable
called
> > "P2_A", the second mention in a variable called "P2_B" and the third
> > mention
> > in "P2_C".  Each answer is coded with numbers like this:
> >
> > 1 = Flu
> > 2 = Cough
> > 3 = Asthma
> > ....
> >
> > 13 = Fever
> >
> > I've already done a K-cluster analysis and segmented my data base.  So
my
> > first task is to develop tables to develop tables of frequencies
crossing
> > Cluster vs. "P2_A" in order to know which are the top of mind products
and
> > their frequencies by cluster, then the second mention and third
mention.
> > I've used this instruction which worked well:
> >
> > > table(infec1,aglomera)
> >      aglomera
> > infec1   1   2   3   4
> >    1  117  88  76  83
> >    2   10  10   9   7
> >    3   15  11  14  14
> >    4    2   0   1   1
> >    5    2   3   1   0
> >    6    1   0   1   0
> >    8    3   3   0   1
> >    9    3   1   1   0
> >    11   0   0   1   1
> >
> > Where "infec1" is a factor of "P2_A" and "aglomera" is a factor of the
> > variable "Cluster" I made.  It worked well when I study them
> > separately...however I would like to know the TOTAL mentions of each
> > sympthom by cluster.  I've done this exercise in SPSS using the
"Multiple
> > Response" instruction first grouping my three variables (i.e. "P2_A",
> > "P2_B"
> > and "P2_C") into a variable called "sick" and cross tabulating it vs.
> > QCL_1
> > (my cluster variable) and it gave me the table I need in this way
(showed
> > at
> > the bottom of this mail):
> >
> > How can I made a table like this in R???.  I've tried combining my
> > variables
> > in a matrix and using xtabs, ftable, table, structable and a lot of
> > combination of them but I haven't had succed with any of them.
> >
> > Please help me with this issue, I don't want to keep using SPSS any
more.
> >
> > Thanx in advance.
> >
> > P.D. Result from SPSS is shown below.
> >
> >
> >
> >                * * *  C R O S S T A B U L A T I O N  * * *
> >
> >   $SICK (group)  mr sick
> > by QCL_1  Cluster Number of Case
> >
> >
> >                       QCL_1
> >
> >                Count  I
> >                       I                                      Row
> >                       I                                     Total
> >                       I     1  I     2  I     3  I     4  I
> > $SICK          --------+--------+--------+--------+--------+
> >                    1  I   130  I    97  I    83  I    89  I   399
> >  Gripe, influenza, ca I        I        I        I        I  83.1
> >                       +--------+--------+--------+--------+
> >                    2  I    53  I    55  I    42  I    46  I   196
> >  Tos de cualquier tip I        I        I        I        I  40.8
> >                       +--------+--------+--------+--------+
> >                    3  I    33  I    36  I    36  I    39  I   144
> >  Dolor irritación     I        I        I        I        I  30.0
> >                       +--------+--------+--------+--------+
> >                    4  I     5  I     1  I     2  I     3  I    11
> >  Bronquitis           I        I        I        I        I   2.3
> >                       +--------+--------+--------+--------+
> >                    5  I     5  I     4  I     1  I     0  I    10
> >  Sinusitis            I        I        I        I        I   2.1
> >                       +--------+--------+--------+--------+
> >                    6  I     1  I     1  I     1  I     3  I     6
> >  Rinitis              I        I        I        I        I   1.3
> >                       +--------+--------+--------+--------+
> >                    8  I     8  I     6  I     4  I     4  I    22
> >  Amigdalitis          I        I        I        I        I   4.6
> >                       +--------+--------+--------+--------+
> >                    9  I     6  I     4  I     1  I     2  I    13
> >  Faringitis           I        I        I        I        I   2.7
> >                       +--------+--------+--------+--------+
> >                   10  I     1  I     2  I     2  I     3  I     8
> >  Laringitis           I        I        I        I        I   1.7
> >                       +--------+--------+--------+--------+
> >                   11  I     1  I     1  I     1  I     1  I     4
> >  Neumonia             I        I        I        I        I    .8
> >                       +--------+--------+--------+--------+
> >                   13  I     0  I     0  I     1  I     0  I     1
> >  Asma                 I        I        I        I        I    .2
> >                       +--------+--------+--------+--------+
> >               Column      153      116      104      107      480
> >                Total     31.9     24.2     21.7     22.3    100.0
> >
> > Percents and totals based on respondents
> >
> > 480 valid cases;  0 missing cases
> >
> >
> >
> > Act. Calef Alejandro Rodríguez Cuevas
> > Analista de mercado
> >
> > Laboratorios Farmasa S.A. de C.V.
> > Schwabe Mexico, S.A. de C.V.
> >
> > Bufalo Nr. 27
> > Col. del Valle 03100
> > Mexico, D.F.
> > Mexico
> >
> > Tel. 52 00 26 80
> > email: [EMAIL PROTECTED]
> >
> > www.schwabe.com.mx
> > www.umckaloabo.com.mx
> >
> > ______________________________________________
> > R-help@r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide
> > http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
> >
>
>
>
> --
> ======================================
> T.K. (Tae-kyun) Kim
> Ph.D. student
> Department of Marketing
> Marshall School of Business
> University of Southern California
> ======================================
>
>    [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to