Hi Jim,

Thanks for your suggestion. My guess is that most of the time is taken
by various kinds of assignments that I am making using loops; and these
can be done without loops. In a follow-up post, I will try to explain in
greater detail each part of my code (especially the parts where
assignments are being made) with comments.

Meanwhile I am copying the output from Rprof below. Any suggestions on
how to increase efficiency on the basis of this output?

> summaryRprof("example1.out")
$by.self
                     self.time self.pct total.time total.pct
fn                      419.64     74.2     564.72      99.9
pnorm                    28.16      5.0      35.02       6.2
matrix                   25.58      4.5     213.26      37.7
sum                      17.02      3.0      17.02       3.0
*                        10.90      1.9      10.90       1.9
exp                       7.76      1.4       7.76       1.4
factorial                 7.38      1.3      11.16       2.0
^                         7.20      1.3       7.20       1.3
-                         6.50      1.1       6.50       1.1
as.vector                 5.12      0.9     196.52      34.8
vector                    4.88      0.9       4.88       0.9
+                         3.66      0.6       3.66       0.6
(                         3.42      0.6       3.42       0.6
>                         2.78      0.5       2.78       0.5
gamma                     2.68      0.5       2.68       0.5
numeric                   2.42      0.4       7.30       1.3
&                         2.36      0.4       2.36       0.4
/                         2.24      0.4       2.24       0.4
==                        2.08      0.4       2.08       0.4
:                         1.58      0.3       1.58       0.3
$                         1.10      0.2       1.10       0.2
dimnames<-                0.28      0.0       0.28       0.0
FUN                       0.26      0.0     193.72      34.3
.Call                     0.24      0.0     395.60      70.0
<Anonymous>               0.08      0.0     565.18     100.0
apply                     0.04      0.0     193.50      34.2
paste                     0.02      0.0       0.28       0.0
as.data.frame.matrix      0.02      0.0       0.02       0.0
is.null                   0.02      0.0       0.02       0.0
genoud                    0.00      0.0     565.42     100.0
t                         0.00      0.0     193.50      34.2
optim                     0.00      0.0     158.70      28.1
do.call                   0.00      0.0       0.30       0.1
mfunc                     0.00      0.0       0.30       0.1
f                         0.00      0.0       0.28       0.0
lapply                    0.00      0.0       0.26       0.0
as.data.frame             0.00      0.0       0.02       0.0

$by.total
                     total.time total.pct self.time self.pct
genoud                   565.42     100.0      0.00      0.0
<Anonymous>              565.18     100.0      0.08      0.0
fn                       564.72      99.9    419.64     74.2
.Call                    395.60      70.0      0.24      0.0
matrix                   213.26      37.7     25.58      4.5
as.vector                196.52      34.8      5.12      0.9
FUN                      193.72      34.3      0.26      0.0
apply                    193.50      34.2      0.04      0.0
t                        193.50      34.2      0.00      0.0
optim                    158.70      28.1      0.00      0.0
pnorm                     35.02       6.2     28.16      5.0
sum                       17.02       3.0     17.02      3.0
factorial                 11.16       2.0      7.38      1.3
*                         10.90       1.9     10.90      1.9
exp                        7.76       1.4      7.76      1.4
numeric                    7.30       1.3      2.42      0.4
^                          7.20       1.3      7.20      1.3
-                          6.50       1.1      6.50      1.1
vector                     4.88       0.9      4.88      0.9
+                          3.66       0.6      3.66      0.6
(                          3.42       0.6      3.42      0.6
>                          2.78       0.5      2.78      0.5
gamma                      2.68       0.5      2.68      0.5
&                          2.36       0.4      2.36      0.4
/                          2.24       0.4      2.24      0.4
==                         2.08       0.4      2.08      0.4
:                          1.58       0.3      1.58      0.3
$                          1.10       0.2      1.10      0.2
do.call                    0.30       0.1      0.00      0.0
mfunc                      0.30       0.1      0.00      0.0
dimnames<-                 0.28       0.0      0.28      0.0
paste                      0.28       0.0      0.02      0.0
f                          0.28       0.0      0.00      0.0
lapply                     0.26       0.0      0.00      0.0
as.data.frame.matrix       0.02       0.0      0.02      0.0
is.null                    0.02       0.0      0.02      0.0
as.data.frame              0.02       0.0      0.00      0.0

$sampling.time
[1] 565.42

> 

Deepankar

On Sun, 2007-12-02 at 20:54 -0500, jim holtman wrote:
> One thing that I would suggest that you do is to use Rprof on a subset
> of the data that runs for 10-15 minutes and see where some of the hot
> spots are.  Since you have not provided commented, minimal,
> self-contained, reproducible code, it is hard to determine where the
> inefficiencies are since we don't have any data to run against it.
> Some of the loop look like you are just assigning a value to a vector,
> e.g.,
> 
> 
> >    if (alive[j]==N1) {
> >
> >        for (i in 1:(N1-1)) {
> >                S[N1,i] <- (q^(nb[j]))*((1-q)^(ng[j]))
> >        }
> >    }
> >
> >    else {
> >        for (i in 1:(N1-1)) {
> >                S[N1,i] <- 0
> >        }
> >
> >    }
> 
> that can be done without loops, but without data, it is hard to
> determine.  Run Rprof and see what summary.Rprof shows to indicate
> where to focus on.
> 
> On Dec 2, 2007 12:49 PM, DEEPANKAR BASU <[EMAIL PROTECTED]> wrote:
> > R Users:
> >
> > I am trying to estimate a model of fertility behaviour using birth history 
> > data with maximum likelihood. My code works but is extremely slow (because 
> > of several for loops and my programming inefficiencies); when I use the 
> > genetic algorithm to optimize the likelihood function, it takes several 
> > days to complete (on a machine with Intel Core 2 processor [2.66GHz] and 
> > 2.99 GB RAM). Computing the hessian and using it to calculate the standard 
> > errors takes a large chunk of this time.
> >
> > I am copying the code for my likelihood function below; it would be great 
> > if someone could suggest any method to speed up the code (by avoiding the 
> > for loops or by any other method).
> >
> > I am not providing details of my model or what exactly I am trying to do in 
> > each step of the computation below; i would be happy to provide these 
> > details if they are deemed necessary for re-working the code.
> >
> > Thanks.
> > Deepankar
> >
> >
> > --------- begin code -----------------------
> >
> > LLK1 <- function(paramets, data.frame, ...) {  # DEFINING THE LOGLIKELIHOOD 
> > FUNCTION
> >
> > # paramets IS A 1x27 VECTOR OF PARAMETERS OVER WHICH THE FUNCTION WILL BE 
> > MAXIMISED
> > # data.frame IS A DATA FRAME. THE DATA FRAME CONTAINS OBSERVATIONS ON 
> > SEVERAL VARIABLES
> > # (LIKE EDUCATION, AGE, ETC.) FOR EACH RESPONDENT. COLUMNS REFER TO 
> > VARIABLES AND ROWS REFER
> > # TO OBSERVATIONS.
> >
> > ########## PARAMETERS ###############################
> >
> > # alpha: interaction between son targeting and family size
> > # beta : son targeting
> > # gamma : family size
> > # delta : a 1x6 vector of probabilities of male birth at various parities 
> > (q1, q2, q3, q4, q5, q6)
> > # zeta : a 1x11 vector of conditional probabilities with zeta[1]=1 always
> >
> > alpha <- paramets[1]      # FIRST PARAMETER
> > beta <- paramets[2:9]     # SECOND TO SEVENTH PARAMETER
> > gamma <- paramets[10:16]
> > delta <- paramets[17]
> > zeta <- paramets[18:27]   # LAST 10 PARAMETERS
> >
> > ################# VARIABLES ###############################
> > # READING IN THE VARIABLES IN THE DATA FRAME
> > # AND RENAMING THEM FOR USE IN THE LIKELIHOOD FUNCTION
> >
> > everborn <- data.frame$v201
> > alive <- data.frame$alive
> > age <- data.frame$age
> > edu <- data.frame$edu
> > rural <- data.frame$rur
> > rich <- data.frame$rich
> > middle <- data.frame$middle
> > poor <- data.frame$poor
> > work <- data.frame$work
> > jointfam <- data.frame$jfam
> > contracep <- data.frame$contra
> > hindu <- data.frame$hindu
> > muslim <- data.frame$muslim
> > scaste <- data.frame$scaste
> > stribe <- data.frame$stribe
> > obc <- data.frame$obc
> > ucaste <- data.frame$ucaste
> > N <- data.frame$dfsize
> > indN <- data.frame$dfsize1  # INDICATOR FUNCTION THAT dfsize==alive
> > nb <- data.frame$nboy
> > ng <- data.frame$ngirl
> > ncord1 <- data.frame$ncord1  # FIRST CHILD: BOY=0; GIRL=1
> > ncord2 <- data.frame$ncord2  #SECOND CHILD: BOY=0; GIRL=1
> > ncord3 <- data.frame$ncord3
> > ncord4 <- data.frame$ncord4
> > ncord5 <- data.frame$ncord5
> > ncord6 <- data.frame$ncord6  # SIXTH CHILD: BOY=0; GIRL=1
> >
> >
> >
> > ######### POSITION OF i^th BOY 
> > ################################################
> > boy1 <- data.frame$boy1     # BIRTH POSITION OF FIRST BOY (ZERO IF THE 
> > FAMILY HAS NO BOYS)
> > boy2 <- data.frame$boy2     # BIRTH POSITION OF SECOND BOY (ZERO IF THE 
> > FAMILY HAS ONLY ONE BOY)
> > boy3 <- data.frame$boy3
> > boy4 <- data.frame$boy4
> > boy5 <- data.frame$boy5
> > boy6 <- data.frame$boy6     # BIRTH POSITION OF SIXTH BOY (ZERO IF THE 
> > FAMILY HAS ONLY FIVE BOYS)
> >
> >
> > ######################## CONDITIONAL PROBABILITIES 
> > ##########################
> > qq21 <- 1
> >
> > qq31 <- 1/(1+exp(zeta[1]))
> > qq32 <- exp(zeta[1])/(1+exp(zeta[1]))
> >
> > qq41 <- 1/(1+exp(zeta[2])+exp(zeta[3]))
> > qq42 <- exp(zeta[2])/(1+exp(zeta[2])+exp(zeta[3]))
> > qq43 <- exp(zeta[3])/(1+exp(zeta[2])+exp(zeta[3]))
> >
> > qq51 <- 1/(1+exp(zeta[4])+exp(zeta[5])+exp(zeta[6]))
> > qq52 <- exp(zeta[4])/(1+exp(zeta[4])+exp(zeta[5])+exp(zeta[6]))
> > qq53 <- exp(zeta[5])/(1+exp(zeta[4])+exp(zeta[5])+exp(zeta[6]))
> > qq54 <- exp(zeta[6])/(1+exp(zeta[4])+exp(zeta[5])+exp(zeta[6]))
> >
> > qq61 <- 1/(1+exp(zeta[7])+exp(zeta[8])+exp(zeta[9])+exp(zeta[10]))
> > qq62 <- 
> > exp(zeta[7])/(1+exp(zeta[7])+exp(zeta[8])+exp(zeta[9])+exp(zeta[10]))
> > qq63 <- 
> > exp(zeta[8])/(1+exp(zeta[7])+exp(zeta[8])+exp(zeta[9])+exp(zeta[10]))
> > qq64 <- 
> > exp(zeta[9])/(1+exp(zeta[7])+exp(zeta[8])+exp(zeta[9])+exp(zeta[10]))
> > qq65 <- 
> > exp(zeta[10])/(1+exp(zeta[7])+exp(zeta[8])+exp(zeta[9])+exp(zeta[10]))
> >
> > zeta1 <- 
> > c(qq21,qq31,qq32,qq41,qq42,qq43,qq51,qq52,qq53,qq54,qq61,qq62,qq63,qq64,qq65)
> >
> > #########################################################################
> >
> > n <- length(N)         # LENGTH OF SAMPLE; SIZE OF THE MAIN LOOP
> >
> > lglik <- numeric(n)    # INITIALIZING THE LOGLIKELIHOOD FUNCTION
> >                       # CREATES A 1xn VECTOR OF ZEROS
> >
> >  for (j in 1:n) {      # START OF MAIN LOOP
> >
> >    S <- matrix(0, 6, 6)  # CREATE A 6x6 MATRIX OF ZEROS
> >    y <- numeric(15)      # CREATE A 1x15 VECTOR OF ZEROS
> >    N1 <- N[j]       # DESIRED FAMILY SIZE
> >
> >
> >      q <- 1/(1+exp(delta))   # PROBABILITY OF MALE BIRTH
> >
> >
> >    if (alive[j]==N1) {
> >
> >        for (i in 1:(N1-1)) {
> >                S[N1,i] <- (q^(nb[j]))*((1-q)^(ng[j]))
> >        }
> >    }
> >
> >    else {
> >        for (i in 1:(N1-1)) {
> >                S[N1,i] <- 0
> >        }
> >
> >    }
> >
> > ######### CREATE A 1x6 VECTOR WITH POSITION OF BOYS WITHIN FAMILY
> >      x <- c(boy1[j], boy2[j], boy3[j], boy4[j], boy5[j])
> >
> >      if (N1>1) {
> >                     for (i in 1:(N1-1)) {
> >                               if (alive[j]>x[i] & x[i]>0) {
> >                                   S[N1,i] <- 0
> >                               }
> >                               if (x[i] == alive[j] ) {
> >                                   S[N1,i] <- (q^(nb[j]))*((1-q)^(ng[j]))
> >                               }
> >                     }
> >      }
> >
> >   y <- 
> > c(S[2,1],S[3,1],S[3,2],S[4,1],S[4,2],S[4,3],S[5,1],S[5,2],S[5,3],S[5,4],S[6,1],S[6,2],S[6,3],S[6,4],S[6,5])
> >
> >
> >   z1 <- c(age[j],edu[j],work[j],rural[j],poor[j],middle[j],hindu[j])        
> >  # DETERMINANTS OF FAMILY SIZE
> >   z2 <- 
> > c(1,age[j],edu[j],work[j],contracep[j],rural[j],jointfam[j],hindu[j])  # 
> > DETERMINANTS OF SON TARGETING
> >
> >   t1 <- 
> > (indN[j])*((q^(nb[j]))*((1-q)^(ng[j])))*(exp(-exp(sum(z1*gamma)))*((exp(sum(z1*gamma)))^N1)*pnorm(-sum(z2*beta)))/factorial(N1)
> >   t2 <- (sum(y*zeta1))*(exp(-exp(sum(z1*gamma) + 
> > alpha))*((exp(sum(z1*gamma) + 
> > alpha))^N1)*(1-pnorm(-sum(z2*beta)))/factorial(N1))
> >   lglik[j] <- log(t1+t2)
> >  }
> >
> >  return(-sum(lglik)) # RETURNING THE NEGATIVE OF THE LOGLIKELIHOOD
> >                     # SUMMED OVER ALL OBSERVATIONS
> >
> >
> > }
> >
> > ------------ end code ----------------------
> >
> > ______________________________________________
> > R-help@r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
> >
> 
> 
>

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to