On Tue, 4 Dec 2007, Scott Bartell wrote: > I'm getting unexpected results from the coxph function when using > weights from counter-matching. For example, the following code > produces a parameter estimate of -1.59 where I expect 0.63:
You can get the answer you want with coxph(Surv(pseudotime, cc)~x+strata(riskset)+offset(log(wt)), data=d2, robust=TRUE) which is how countermatching usually seems to be done, and is what the original paper by Langholz & Borgan recommends. I think it's right that weight=wt doesn't do the same thing. The weights are not simple inverse-probability sampling weights, because the sampling units in this design are pairs, not individuals. If we assume the distribution of x is the same across risk sets (which looks approximately true in your data) then the sampling weight for a pair is proportional to the number of eligible controls: ie, just your control weight. Using these as weights for the pairs in the weight= argument I get 0.585 as the hazard ratio, reasonably close to your 0.63 given that this is a different estimator and given the assumptions. -thomas > d2 = structure(list(x = c(1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, > 1, 0, 0, 1, 0, 1, 0, 1, 0, 1), wt = c(5, 42, 40, 4, 43, 4, 42, > 4, 44, 5, 38, 4, 39, 4, 4, 37, 40, 4, 44, 5, 45, 5, 44, 5), riskset = c(1L, > 1L, 4L, 4L, 6L, 6L, 12L, 12L, 13L, 13L, 19L, 19L, 23L, 23L, 31L, > 31L, 42L, 42L, 45L, 45L, 70L, 70L, 93L, 93L), cc = c(1, 0, 1, > 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 > ), pseudotime = rep(1,24)), .Names = c("x", "wt", "riskset", > "cc", "pseudotime"), class = "data.frame", row.names=1:24) > > coxph( Surv(pseudotime, cc) ~ x + strata(riskset), weights=wt, > robust=T, method="breslow",data=d2) > > I'm expecting a value of about 0.63 to 0.64 based on the data source > (simulated) and the following hand-coded MLE: > > negloglik = function(beta,dat) { > dat$wexb = dat$wt * exp(dat$x * beta) > agged = aggregate(dat$wexb,list(riskset=dat$riskset),sum) > names(agged)[2] = "denom" > dat = merge(dat[dat$cc==1,],agged,by="riskset") > -sum(log(dat$wexb)-log(dat$denom)) > } > nlm(negloglik,0,hessian=T,dat=d2) > > Am I misunderstanding the meaning of case weights in the coxph > function? The help file is pretty terse. > > Scott Bartell, PhD > Assistant Professor > Department of Epidemiology > University of California, Irvine > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > Thomas Lumley Assoc. Professor, Biostatistics [EMAIL PROTECTED] University of Washington, Seattle ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.