It looks to me like you keep sampling from some dataset 's' 10,000 times. Since you can sample() with replacement, I wonder if you could just take a sample of the size you want, rather than using a loop with sample. Perhaps along these lines:
d <- apply(s, 2, sample, size = 10000*nrow(s), replace = TRUE) pos_neg_tem <- t(apply(d,1,doit)) Josh On Tue, Jul 27, 2010 at 3:44 PM, jd6688 <jdsignat...@gmail.com> wrote: > > I am trying to do the following to accomplish the tasks, can anybody to > simplify the solutions. > > Thanks, > > for (i in 1:10000){ > d<-apply(s,2,sample) > pos_neg_tem<-t(apply(d,1,doit)) > if (i>1){ > pos_neg_pool<-rbind(pos_neg_pool,pos_neg_tem) > > }else{ > > pos_neg_pool<- pos_neg_tem > }} > -- > View this message in context: > http://r.789695.n4.nabble.com/re-sampling-of-large-sacle-data-tp2304165p2304221.html > Sent from the R help mailing list archive at Nabble.com. > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > -- Joshua Wiley Ph.D. Student, Health Psychology University of California, Los Angeles http://www.joshuawiley.com/ ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.