Given a data frame, or it could be a matrix if I choose to.
The data consists of an ID, a year, and data for all 12 months.
Missing values are a factor AND missing years.

Id<-c(rep(67543,4),rep(12345,3),rep(89765,5))
 Years<-c(seq(1989,1992,by =1),1991,1993,1994,seq(1991,1995,by=1))
 Values2<-c(12,NA,34,21,NA,65,23,NA,13,NA,13,14)
 Values<-c(12,14,34,21,54,65,23,12,13,13,13,14)
 
Data<-data.frame(Index=Id,Year=Years,Jan=Values,Feb=Values/2,Mar=Values2,Apr=Values2,Jun=Values,July=Values/3,Aug=Values2,Sep=Values,
+ Oct=Values,Nov=Values,Dec=Values2)
 Data
   Index Year Jan  Feb Mar Apr Jun      July Aug Sep Oct Nov Dec
1  67543 1989  12  6.0  12  12  12  4.000000  12  12  12  12  12
2  67543 1990  14  7.0  NA  NA  14  4.666667  NA  14  14  14  NA
3  67543 1991  34 17.0  34  34  34 11.333333  34  34  34  34  34
4  67543 1992  21 10.5  21  21  21  7.000000  21  21  21  21  21
5  12345 1991  54 27.0  NA  NA  54 18.000000  NA  54  54  54  NA
6  12345 1993  65 32.5  65  65  65 21.666667  65  65  65  65  65
7  12345 1994  23 11.5  23  23  23  7.666667  23  23  23  23  23
8  89765 1991  12  6.0  NA  NA  12  4.000000  NA  12  12  12  NA
9  89765 1992  13  6.5  13  13  13  4.333333  13  13  13  13  13
10 89765 1993  13  6.5  NA  NA  13  4.333333  NA  13  13  13  NA
11 89765 1994  13  6.5  13  13  13  4.333333  13  13  13  13  13
12 89765 1995  14  7.0  14  14  14  4.666667  14  14  14  14  14


The Goal is to return a Time series object for each ID. Alternatively one
could return a matrix that I can turn into a Time series.
The final structure would be something like this ( done in matrix form for
illustration)
          1989.0  1989.083
    1991 ......1992....1993..... 1994 .... 1995
67543 12       6.0   12  12  12  4.000000  12  12  12  12  12...
.34...........21..     NA.........NA........NA
12345  NA, NA,
NA,.............................................................54 27

Basically the time series will have patches at the front, middle and end
where you may have years of NA
The must be column ordered by time and aligned so that averages for all
series can be computed per month.

Now I have looping code to do this, where I loop through all the IDs and map
the row of data into the correct
column. and create column names based on the data and row names based on the
ID, but it's painfully
slow. Any wizardry would help.

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to