practically we have to pass all these stages: he did it today with a similar case, where there is non trend, but a seasonality. I've to modify this data for canadian lynx and i know how to do it. the problem is to chose the correct p q d P Q D and comment the results for the graphs and the reasons of my graphs...
rm(list=ls()) N = length(nottem) max_lag = 20 plot(nottem) par(ask=TRUE) diff_12 = diff(nottem,lag=12) plot(diff_12) N = length(diff_12) max_lag = 36 acf(diff_12,max_lag) pacf(diff_12,max_lag) res = arima(diff_12, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 1), period = 12)) residui = res$residuals acf_r = acf(residui,max_lag,type="corr") acf_res = acf_r$acf Q = N * sum(acf_res[2:max_lag]^2) p_val = 1 - pchisq(Q, max_lag - 2) print(p_val) readline() # Forecasting: (1) Holt Winters m <- HoltWinters(nottem, seasonal = "add") p1 <- predict(m, 6, prediction.interval = TRUE) plot(m) par(ask=TRUE) plot(fitted(m)) print(p1) # 2. SARIMA p2 = predict(arima(nottem, order = c(1, 0, 0), seasonal = list(order = c(1, 1, 1), period = 12)), n.ahead = 12) p3 = p2$pred p3 = ts(p3,start=1940,frequency=12) # plotting both the observed series and the forecasts final = c(nottem,p3) final = ts(final,start=1920,frequency=12) plot(final,type="b") lines(p3,type="b",col="red") #p2 = predict(res, n.ahead = 6) #x = log(AirPassengers) #n = length(x) #p2_level1 = exp(x[n-11] + (x[n] - x[n-12]) - p2$pred[1]) #h = 6 #p2_level = rep(0,h) #x = c(x,rep(0,h)) #for (i in 1:h) #{ # p2_level[i] = exp(x[n-12+i] + (x[n-1+i] - x[n-12+(i-1)]) - p2$pred[i]) # x[n+i] = log(p2_level[i]) #} -- View this message in context: http://r.789695.n4.nabble.com/HELPPPPPP-tp3063358p3064637.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.