Dear List, I think I'm going crazy here...can anyone explain why do I get the same predictions in train and test data sets below when the second has a missing input?
y <- rnorm(1000) x1 <- rnorm(1000) x2 <- rnorm(1000) train <- data.frame(y,x1,x2) test <- data.frame(x1) myfit <- glm(y ~ x1 + x2, data=train) summary(myfit) all(predict(myfit, test) == predict(myfit, train)) [1] TRUE Thanks, Axel. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.