Hi: Is this what you're after?
fout <- function(x) { lim <- median(x) + c(-2, 2) * mad(x) x[x < lim[1] | x > lim[2]] } > apply(datafr1, 2, fout) $var1 [1] 17.5462078 18.4548214 0.7083442 1.9207578 -1.2296787 17.4948240 [7] 19.5702558 1.6181150 20.9791652 -1.3542099 1.8215087 -1.0296303 [13] 20.5237930 17.5366497 18.5657566 0.9335419 19.7519983 17.8607968 [19] 19.1307524 19.6145711 21.8037136 19.1532175 -2.6688409 19.6949309 [25] 1.9712347 $var2 [1] 37.3822087 35.6490641 35.6000785 38.5981086 -1.6504275 37.1419290 [7] 37.7605230 40.3508689 0.6639900 2.4695841 38.8209491 39.9087921 [13] 38.9907585 35.8279437 2.7870799 37.0941113 0.6308583 36.4556638 [19] -10.2384849 2.8480199 -7.7680457 35.7076539 -0.5467739 3.4702765 [25] 40.4818580 3.2864273 1.4917174 $var3 [1] 74.252563 68.396391 68.845461 -5.006545 66.083402 76.036577 [7] 75.112586 -6.374241 63.883549 64.041216 -19.764360 -15.051017 [13] -9.782767 64.696013 70.970648 -4.562031 -22.135003 70.549310 [19] 69.495915 -4.095587 86.612375 87.029526 70.072126 -6.421695 [25] 65.737536 $var4 [1] 81.476483 87.098767 -10.451616 91.927329 86.588952 85.080950 [7] 84.958645 -9.456368 86.270876 -22.936779 83.314032 Double checks: > apply(datafr1, 2, function(x) median(x) + c(-2, 2) * mad(x)) var1 var2 var3 var4 [1,] 2.12167 3.779415 -3.736066 -3.471752 [2,] 17.37176 34.929800 62.969733 80.224799 > apply(datafr1, 2, range) var1 var2 var3 var4 [1,] -2.668841 -10.23848 -22.13500 -22.93678 [2,] 21.803714 40.48186 87.02953 91.92733 Assuming you wanted to do this columnwise (by variable), it appears to be doing the right thing. HTH, Dennis On Thu, Mar 17, 2011 at 7:04 PM, Ram H. Sharma <sharma.ra...@gmail.com>wrote: > Dear R community members > > I have been struggling on this simple question, but never get appropriate > solution. So please help. > > # my data, though I have a large number of variables > var1 <- rnorm(500, 10,4) > var2 <- rnorm(500, 20, 8) > var3 <- rnorm(500, 30, 18) > var4 <- rnorm(500, 40, 20) > datafr1 <- data.frame(var1, var2, var3, var4) > > # my unsuccessful codes > nvar <- ncol(datafr1) > for (i in 1:nvar) { > out1 <- NULL > out2 <- NULL > medianx <- median(getdata[,i], na.rm = TRUE) > show(madx <- mad(getdata[,i], na.rm = TRUE)) > MD1 <- c(medianx + 2*madx) > MD2 <- c(medianx - 2*madx) > out1[i] <- which(getdata[,i] > MD1) # store data that are > greater than median + 2 mad > out2[i] <- which (getdata[,1] < MD2) # store data that are > greater than median - 2 mad > resultdf <- data.frame(out1, out2) > write.table (resultdf, "out.csv", sep=",") > } > > > My idea here is to store those value which are either greater than median + > 2 *MAD or less than median - 2*MAD. Each variable have different length of > output. > > The following last error message: > Error in data.frame(out1, out2) : > arguments imply differing number of rows: 2, 0 > In addition: Warning messages: > 1: In out1[i] <- which(getdata[, i] > MD1) : > number of items to replace is not a multiple of replacement length > 2: In out2[i] <- which(getdata[, 1] < MD2) : > number of items to replace is not a multiple of replacement length > 3: In out1[i] <- which(getdata[, i] > MD1) : > number of items to replace is not a multiple of replacement length > > Thank you in advance for helping me. > > Best regards; > RHS > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.