I have tried this method, but the result is not working, at least not as I expect: I used the CreditMetrics package transition matrix rc <- c("AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D") M <- matrix(c(90.81, 8.33, 0.68, 0.06, 0.08, 0.02, 0.01, 0.01, 0.70, 90.65, 7.79, 0.64, 0.06, 0.13, 0.02, 0.01, 0.09, 2.27, 91.05, 5.52, 0.74, 0.26, 0.01, 0.06, 0.02, 0.33, 5.95, 85.93, 5.30, 1.17, 1.12, 0.18, 0.03, 0.14, 0.67, 7.73, 80.53, 8.84, 1.00, 1.06, 0.01, 0.11, 0.24, 0.43, 6.48, 83.46, 4.07, 5.20, 0.21, 0, 0.22, 1.30, 2.38, 11.24, 64.86, 19.79, 0, 0, 0, 0, 0, 0, 0, 100 )/100, 8, 8, dimnames = list(rc, rc), byrow = TRUE)
then followed through with the steps: nth_root <- X %*% L_star %*% X_inv But the check (going back 12 to the power again) doesn't yield the original matrix. Now some rounding errors can be expected, but I didn't expect a perfectly diagonal matrix, when the initial matrix isn't diagonal at all. > round(nth_root^12,4) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [1,] 0.9078 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 [2,] 0.0000 0.9053 0.0000 0.0000 0.0000 0.0000 0.0000 0 [3,] 0.0000 0.0000 0.9079 0.0000 0.0000 0.0000 0.0000 0 [4,] 0.0000 0.0000 0.0000 0.8553 0.0000 0.0000 0.0000 0 [5,] 0.0000 0.0000 0.0000 0.0000 0.7998 0.0000 0.0000 0 [6,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.8285 0.0000 0 [7,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6457 0 [8,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 Any takers ----- Christian Langkamp christian.langkamp-at-gmxpro.de -- View this message in context: http://r.789695.n4.nabble.com/12th-Root-of-a-Square-Transition-Matrix-tp2259736p3989618.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.