The package minpack.lm allows nonlinear regression problems to be addressed with a modification of the Levenberg-Marquardt algorithm based on the implementation of 'lmder' and 'lmdif' in MINPACK. Version 1.0-8 of the package is now available on CRAN.
Changes in version 1.0-8 include: o possibility to obtain standard error estimates on the parameters via new methods for the generic functions 'summary' and 'vcov' o possibility to extract other information via new methods for the generic functions 'coef', 'deviance', 'df.residual', 'print', and 'residuals' o the argument 'control' of 'nls.lm' now defaults to 'nls.lm.control()'; 'nls.control.lm' allows a maximum number of iterations to be specified; when the element 'nprint' of the 'control' argument of a call to 'nls.lm' is an integer greater than 0, the residual sum of squares is now included in the information printed every 'nprint' iterations ` o the list returned by 'nls.lm' includes elements 'niter' and 'deviance' that represent the number of iterations performed and the residual sum of squares, respectively side-note on Levenberg-Marquardt (LM) versus Gauss-Newton (GN): There was some discussion (http://finzi.psych.upenn.edu/R/Rhelp02a/archive/108758.html) on Rhelp regarding whether one comes across real-world problems in which LM performs better than GN. I have been seeing such problems recently in some applications where GN as implemented in 'nls' reduces the step to a very small value, resulting in little change in the residual sum of squares from the starting values, whereas both NL2SOL applied via 'nls' called with 'algorithm="port"' or LM as implemented in 'minpack.lm::nls.lm' significantly reduce the RSS. The implementation of NL2SOL is slower by a significant factor on these problems as compared to either the GN or LM implementations, making use of 'minpack.lm::nls.lm' attractive. Note that these problems may be considered pathological; there are issues with near collinearity of columns of the Jacobian and with the assumption that the residuals are Gaussian. Kate Mullen Timur Elzhov _______________________________________________ R-packages mailing list [EMAIL PROTECTED] https://stat.ethz.ch/mailman/listinfo/r-packages ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.