Hi
> 
> Dear R users, 
> 
> I am using the code below to generate a fitted value of b. I have about 
> 300 different values for for y (y1, y2, ...y300) which means I will have 

> to write the code below 300 times to generate the 300 different fitted 
> values for y. Is there a short way of doing that ?

With lm you can use several dependent variables to get result, but I do 
not know if it works with gam.

You can put y1 - y300 to list and than use lapply or for cycle to do the 
analysis and store results in a list (list.y).

something like (untested)

for (i in 1:300) {

b[i] <- gam(list.y[i]~s(x1,x2, k=100, data=dat)

}

Regards
Petr



> 
> Many thanks in advance
> Mintewab 
> 
> library(mgcv)
> dat <- read.table("e:/minti's laptop/C/GBG/allround_survey/
> rainfallGPS.csv", header=T, sep=",") 
> b<-gam(y1~s(x1, x2, k=100),data=dat)
> vis.gam(b)
> fitted(b)
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to