Hi > > Dear R users, > > I am using the code below to generate a fitted value of b. I have about > 300 different values for for y (y1, y2, ...y300) which means I will have
> to write the code below 300 times to generate the 300 different fitted > values for y. Is there a short way of doing that ? With lm you can use several dependent variables to get result, but I do not know if it works with gam. You can put y1 - y300 to list and than use lapply or for cycle to do the analysis and store results in a list (list.y). something like (untested) for (i in 1:300) { b[i] <- gam(list.y[i]~s(x1,x2, k=100, data=dat) } Regards Petr > > Many thanks in advance > Mintewab > > library(mgcv) > dat <- read.table("e:/minti's laptop/C/GBG/allround_survey/ > rainfallGPS.csv", header=T, sep=",") > b<-gam(y1~s(x1, x2, k=100),data=dat) > vis.gam(b) > fitted(b) > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.