FWIW, the integral of a mixture density is the same mixture of the
CDFs, so you can use the pbeta functions:
pcustom <- function(x) (pbeta(x,2,6) + pbeta(x,6,2))/2
albyn
Quoting Gerhard <felds...@gmx.net>:
Am Dienstag, 3. Januar 2012, 19:51:36 schrieb Prof. Dr. Matthias Kohl:
D <- AbscontDistribution(d = function(x) dbeta(x, 2, 6) + dbeta(x,6,2),
low = 0, up = 1, withStand = TRUE)
Dear all,
thank you all again for your help.
So, summing up, (in case this might be useful to other beginners - like me)
this is how it can be done:
############################
library(distr)
dcustom <- function(x) {
(dbeta(x,2,6) + dbeta(x,6,2))/2 # I need to divide by 2 to get 1 as
# result of
integration;
}
pcustom <- function(x) {
integrate(dmyspeaker,0,x)$value
}
D <- AbscontDistribution(d = dcustom, low = 0, up = 1, withStand = TRUE)
qcustom <- function(x){
q(D)(x)
}
############################
Best,
Gerhard
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.