Is the labeling/naming of levels in the documentation for the predict.glmmPQL function "backwards"? The documentation states "Level values increase from outermost to innermost grouping, with level zero corresponding to the population predictions". Taking the sample in the documentation:
fit <- glmmPQL(y ~ trt + I(week > 2), random = ~1 | ID, family = binomial, data = bacteria) > head(predict(fit, bacteria, level = 0, type="response")) [1] 0.9680779 0.9680779 0.8587270 0.8587270 0.9344832 0.9344832 > head(predict(fit, bacteria, level = 1, type="response")) X01 X01 X01 X01 X02 X02 0.9828449 0.9828449 0.9198935 0.9198935 0.9050782 0.9050782 > head(predict(fit, bacteria, type="response")) ## population prediction X01 X01 X01 X01 X02 X02 0.9828449 0.9828449 0.9198935 0.9198935 0.9050782 0.9050782 The returned values for level=1 and level=<unspecified> match, which is not what I expected based upon the documentation. Exponentiating the intercept coefficients from the fitted regression, the level=0 values match when the random effect intercept is included > 1/(1+exp(-3.412014)) ## only the fixed effect [1] 0.9680779 > 1/(1+exp(-1*(3.412014+0.63614382))) ## fixed and random effect intercepts [1] 0.9828449 Thanks! Mike ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.