Seems that I found the problem.
The degree of freedom was missing as a denominator...
Thank you for your help.
Best wishes,
Jie
On Thu, Jul 5, 2012 at 9:28 AM, John Kane <jrkrid...@inbox.com> wrote:

> I don't believe that R-help permits pdf files.  A useful workaround is to
> post it to a file hosting site like MediaFire and post the link here.
> John Kane
> Kingston ON Canada
>
>
> > -----Original Message-----
> > From: jimmycl...@gmail.com
> > Sent: Wed, 4 Jul 2012 22:56:02 -0400
> > To: pauljoh...@gmail.com
> > Subject: Re: [R] EM algorithm to find MLE of coeff in mixed effects model
> >
> > Dear Paul,
> >
> > Thank you for your suggestion. I was moved by the fact that people are so
> > nice to help learners and ask for nothing.
> > With your help, I made some changes to my code and add more comments, try
> > to make things more clear.
> > If this R email list allow me to upload a pdf file to illustrate the
> > formula, it will be great.
> > The reason I do not use lme4 is that later I plan to use this for a more
> > complicated model (Y,T), Y is the same response of mixed model and T is a
> > drop out process.
> > (Frankly I did it for the more complicated model first and got NaN
> > hessian
> > after one iteration, so I turned to the simple model.)
> > In the code, the m loop is the EM iterations. About efficiency, thank you
> > again for pointing it out. I compared sapply and for loop, they are tie
> > and
> > for loop is even better sometimes.
> > In a paper by Bates, he mentioned that the asymptotic properties of beta
> > is
> > kind of independent of the other two parameters. But it seems that paper
> > was submitted but I did not find it on google scholar.
> > Not sure if it is the reason for my results. That is why I hope some
> > expert
> > who have done some simulation similar may be willing to give some
> > suggestion.
> > I may turn to other methods to calculate the conditional expection of the
> > latent variable as the same time.
> >
> > Modified code is as below:
> >
> > # library(PerformanceAnalytics)
> > # install.packages("gregmisc")
> > # install.packages("statmod")
> > library(gregmisc)
> > library(MASS)
> > library(statmod)
> >
> > ## function to calculate loglikelihood
> > loglike <- function(datai = data.list[[i]], vvar = var.old,
> >     beta = beta.old, psi = psi.old) {
> >     temp1 <- -0.5 * log(det(vvar * diag(nrow(datai$Zi)) + datai$Zi %*%
> >         psi %*% t(datai$Zi)))
> >     temp2 <- -0.5 * t(datai$yi - datai$Xi %*% beta) %*% solve(vvar *
> >         diag(nrow(datai$Zi)) + datai$Zi %*% psi %*% t(datai$Zi)) %*%
> >         (datai$yi - datai$Xi %*% beta)
> >     temp1 + temp2
> > }
> >
> > ## functions to evaluate the conditional expection, saved as Efun v2.R
> > ## Eh1new=E(bibi')
> > ## Eh2new=E(X'(y-Zbi))
> > ## Eh3new=E(bi'Z'Zbi)
> > ## Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi)
> > ## Eh5new=E(Xibeta-yi)'Zibi
> > ## Eh6new=E(bi)
> >
> > Eh1new <- function(datai = data.list[[i]], weights.m = weights.mat) {
> >     bi <- datai$b
> >     tempb <- bi * rep(sqrt(weights.m[, 1] * weights.m[, 2]),
> >         2)  #quadratic b, so need    sqrt
> >     t(tempb) %*% tempb/pi
> > }  # end of Eh1
> >
> >
> > # Eh2new=E(X'(y-Zbi))
> > Eh2new <- function(datai = data.list[[i]], weights.m = weights.mat) {
> >     bi <- datai$b
> >     tempb <- bi * rep(weights.m[, 1] * weights.m[, 2], 2)
> >     tt <- t(datai$Xi) %*% datai$yi - t(datai$Xi) %*% datai$Zi %*%
> >         colSums(tempb)/pi
> >     c(tt)
> > }  # end of Eh2
> >
> >
> > # Eh3new=E(b'Z'Zbi)
> > Eh3new <- function(datai = data.list[[i]], weights.m = weights.mat) {
> >     bi <- datai$b
> >     tempb <- bi * rep(sqrt(weights.m[, 1] * weights.m[, 2]),
> >         2)  #quadratic b, so need sqrt
> >     sum(sapply(as.list(data.frame(datai$Zi %*% t(tempb))),
> >         function(s) {
> >             sum(s^2)
> >         }))/pi
> > }  # end of Eh3
> >
> > # Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi)
> > Eh4new <- function(datai = data.list[[i]], weights.m = weights.mat,
> >     beta = beta.old) {
> >     bi <- datai$b
> >     tt <- sapply(as.list(ata.frame(c(datai$yi - datai$Xi %*%
> >         beta) - datai$Zi %*% t(bi))), function(s) {
> >         sum(s^2)
> >     }) * (weights.m[, 1] * weights.m[, 2])
> >     sum(tt)/pi
> > }  # end of Eh4
> >
> > Eh4newv2 <- function(datai = data.list[[i]], weights.m = weights.mat,
> >     beta = beta.old) {
> >     bi <- datai$b
> >     v <- weights.m[, 1] * weights.m[, 2]
> >     temp <- c()
> >     for (i in 1:length(v)) {
> >         temp[i] <- sum(((datai$yi - datai$Xi %*% beta - datai$Zi %*%
> >             bi[i, ]) * sqrt(v[i]))^2)
> >     }
> >     sum(temp)/pi
> > }  # end of Eh4
> >
> > # Eh5new=E(Xibeta-yi)'Zib
> > Eh5new <- function(datai = data.list[[i]], weights.m = weights.mat,
> >     beta = beta.old) {
> >     bi <- datai$b
> >     tempb <- bi * rep(weights.m[, 1] * weights.m[, 2], 2)
> >     t(datai$Xi %*% beta - datai$yi) %*% (datai$Zi %*% t(tempb))
> >     sum(t(datai$Xi %*% beta - datai$yi) %*% (datai$Zi %*%
> >         t(tempb)))/pi
> > }
> >
> > Eh6new <- function(datai = data.list[[i]], weights.m = weights.mat) {
> >     bi <- datai$b
> >     tempw <- weights.m[, 1] * weights.m[, 2]
> >     for (i in 1:nrow(bi)) {
> >         bi[i, ] <- bi[i, ] * tempw[i]
> >     }
> >     colMeans(bi)/pi
> > }  # end of Eh6
> >
> > ## the main R script
> > ################### initial the values and generate the data
> > ##################
> > n <- 100                                               #number of
> > observations
> > beta <- c(-0.5, 1)                               #true coefficient of
> > fixed
> > effects
> > vvar <- 2  #sigma^2=2                                  #true error
> > variance
> > of epsilon
> > psi <- matrix(c(1, 0.2, 0.2, 1), 2, 2)                 #covariance matrix
> > of random effects b
> > b.m.true <- mvrnorm(n = n, mu = c(0, 0), Sigma = psi)  #100*2 matrix,
> > each
> > row is the b_i
> > Xi <- cbind(rnorm(7, mean = 2, sd = 0.5), log(2:8))
> > Zi <- Xi
> > y.m <- matrix(NA, nrow = n, ncol = nrow(Xi))            #100*7, each row
> > is
> > a y_i Zi=Xi
> >
> > for( i in 1:n)
> > {
> > y.m[i,]=mvrnorm(1,mu=(Xi%*%beta+Zi%*%b.m.true[i,]),vvar*diag(nrow(Xi)))
> > }
> > b.list <- as.list(data.frame(t(b.m.true)))
> > psi.old <- matrix(c(0.5, 0.4, 0.4, 0.5), 2, 2)          #starting psi,
> > beta
> > and var,not the true values
> > beta.old <- c(-0.3, 0.7)
> > var.old <- 1.7
> >
> > gausspar <- gauss.quad(10, kind = "hermite", alpha = 0, beta = 0)
> >
> > # data.list.wob contains X,Y and Z, but no b's
> > data.list.wob <- list()
> > for (i in 1:n) {
> >     data.list.wob[[i]] <- list(Xi = Xi, yi = y.m[i, ], Zi = Zi)
> > }
> >
> > # compute true loglikelihood and initial loglikelihood
> > truelog <- 0
> > for (i in 1:length(data.list.wob)) {
> >     truelog <- truelog + loglike(data.list.wob[[i]], vvar, beta, psi)
> > }
> > truelog
> >
> > loglikeseq <- c()
> > loglikeseq[1] <- sum(sapply(data.list.wob, loglike))
> >
> > ECM <- F
> >
> > ############################# E-M steps
> > ################################################
> > # m loop is the EM iteration
> > for (m in 1:300) {
> >     Sig.hat <- Zi %*% psi.old %*% t(Zi) + var.old * diag(nrow(Zi))
> > #estimated covariance matrix of y
> >     Sig.hat.inv <- solve(Sig.hat)
> >     W.hat <- psi.old - psi.old %*% t(Zi) %*% Sig.hat.inv %*%
> >         Zi %*% psi.old
> >     Sigb <- psi.old - psi.old %*% t(Zi) %*% Sig.hat.inv %*% Zi %*%
> > psi.old
> >  #estimated covariance matrix of b
> >
> >     Y.minus.X.beta <- t(t(y.m) - c(Xi %*% beta.old))
> >     miu.m <- t(apply(Y.minus.X.beta, MARGIN = 1, function(s,
> >         B = psi.old %*% t(Zi) %*% solve(Sig.hat)) {
> >         B %*% s
> >     }))  ### each row is the miu_i
> >
> >     tmp1 <- permutations(length(gausspar$nodes), 2, repeats.allowed = T)
> >     tmp2 <- c(tmp1)
> >     a.mat <- matrix(gausspar$nodes[tmp2], nrow = nrow(tmp1))  # a1,a1
> >      # a1,a2
> >   # ...
> >   # a10,a9
> >   # a10,a10
> >   # a.mat are all ordered pairs of gauss hermite nodes
> >     a.mat.list <- as.list(data.frame(t(a.mat)))
> >     tmp1 <- permutations(length(gausspar$weights), 2, repeats.allowed =
> > T)
> >     tmp2 <- c(tmp1)
> >     weights.mat <- matrix(gausspar$weights[tmp2], nrow = nrow(tmp1))  #
> > w1,w1
> >        # w1,w2
> >       # ...
> >       # w10,w9
> >       # w10,w10
> >       # weights.mat are all ordered pairs of gauss hermite weights
> >     L <- chol(solve(W.hat))
> >     LL <- sqrt(2) * solve(L)
> >     halfb <- t(LL %*% t(a.mat))
> >     # each page of b.array is all values of bi_k and bi_j for b_i
> >     # need to calculate those b's as linear functions of nodes since the
> > original integral needs transformation to use gauss approximation
> >     b.list <- list()
> >     for (i in 1:n) {
> >         b.list[[i]] <- t(t(halfb) + miu.m[i, ])
> >     }
> >
> >     # generate a list, each page contains Xi,yi,Zi, and b's
> >     data.list <- list()
> >     for (i in 1:n) {
> >         data.list[[i]] <- list(Xi = Xi, yi = y.m[i, ], Zi = Zi,
> >             b = b.list[[i]])
> >     }
> >
> >     # update sigma^2
> >     t1 <- proc.time()
> >     tempaa <- c()
> >     tempbb <- c()
> >     for (j in 1:n) {
> >         tempbb[j] <- Eh4newv2(datai = data.list[[j]], weights.m =
> > weights.mat, beta = beta.old)
> >     }
> >     var.new <- mean(tempbb)
> >     if (ECM == T) {
> >         var.old <- var.new
> >     }
> >
> >     sumXiXi <- matrix(rowSums(sapply(data.list, function(s) {
> >         t(s$Xi) %*% (s$Xi)
> >     })), ncol = ncol(Xi))
> >     tempbb=sapply(data.list,Eh2new)
> >     beta.new <- solve(sumXiXi) %*% rowSums(tempbb)
> >
> >     if (ECM == T) {
> >         beta.old <- beta.new
> >     }
> >
> >     # update psi
> >     tempcc <- array(NA, c(2, 2, n))
> >     sumtempcc <- matrix(0, 2, 2)
> >     for (j in 1:n) {
> >         tempcc[, , j] <- Eh1new(data.list[[j]], weights.m = weights.mat)
> >         sumtempcc <- sumtempcc + tempcc[, , j]
> >     }
> >     psi.new <- sumtempcc/n
> >
> >     # stop condition
> >     if (sum(abs(beta.old - beta.new)) + sum(abs(psi.old - psi.new)) +
> >         sum(abs(var.old - var.new)) < 0.01) {
> >         print("converge, stop")
> >         break
> >     }
> >
> >     # update parameters
> >     var.old <- var.new
> >     psi.old <- psi.new
> >     beta.old <- beta.new
> >     loglikeseq[m + 1] <- sum(sapply(data.list, loglike))
> > }  # end of M loop
> >
> >
> > On Tue, Jul 3, 2012 at 5:06 PM, Paul Johnson <pauljoh...@gmail.com>
> > wrote:
> >
> >> On Tue, Jul 3, 2012 at 12:41 PM, jimmycloud <jimmycl...@gmail.com>
> >> wrote:
> >>> I have a general question about coefficients estimation of the mixed
> >> model.
> >>>
> >>
> >> I have 2 ideas for you.
> >>
> >> 1. Fit with lme4 package, using the lmer function. That's what it is
> >> for.
> >>
> >> 2. If you really want to write your own EM algorithm, I don't feel
> >> sure that very many R and EM experts are going to want to read through
> >> the code you have because you don't follow some of the minimal
> >> readability guidelines.  I accept the fact that there is no officially
> >> mandated R style guide, except for "indent with 4 spaces, not tabs."
> >> But there are some almost universally accepted basics like
> >>
> >> 1. Use <-, not =, for assignment
> >> 2. put a space before and  after symbols like <-, = , + , * , and so
> >> forth.
> >> 3. I'd suggest you get used to putting squiggly braces in the K&R style.
> >>
> >> I have found the formatR package's tool tidy.source can do this
> >> nicely. From tidy.source, here's what I get with your code
> >>
> >> http://pj.freefaculty.org/R/em2.R
> >>
> >> Much more readable!
> >> (I inserted library(MASS) for you at the top, otherwise this doesn't
> >> even survive the syntax check.)
> >>
> >> When I copy from email to Emacs, some line-breaking monkey-business
> >> occurs, but I expect you get the idea.
> >>
> >> Now, looking at your cleaned up code, I can see some things to tidy up
> >> to improve the chances that some expert will look.
> >>
> >> First, R functions don't require "return" at the end, many experts
> >> consider it distracting. (Run "lm" or such and review how they write.
> >> No return at the end of functions).
> >>
> >> Second, about that big for loop at the top, the one that goes from m
> >> 1:300
> >>
> >> I don't know what that loop is doing, but there's some code in it that
> >> I'm suspicious of. For example, this part:
> >>
> >>  W.hat <- psi.old - psi.old %*% t(Zi) %*% solve(Sig.hat) %*%  Zi %*%
> >> psi.old
> >>
> >>     Sigb <- psi.old - psi.old %*% t(Zi) %*% solve(Sig.hat) %*%  Zi %*%
> >> psi.old
> >>
> >>
> >> First, you've caused the possibly slow calculation of solve
> >>  (Sig.hat) to run two times.  If you really need it, run it once and
> >> save the result.
> >>
> >>
> >> Second, a for loop is not necessarily slow, but it may be easier to
> >> read if you re-write this:
> >>
> >>  for (j in 1:n) {
> >>
> tempaa[j]=Eh4new(datai=data.list[[j]],weights.m=weights.mat,beta=beta.old)
> >>         tempbb[j] <- Eh4newv2(datai = data.list[[j]], weights.m =
> >> weights.mat, beta = beta.old)
> >>  }
> >>
> >> like this:
> >>
> >> tempaa <- lapply(data.list, Eh4new, weights.m, beta.old)
> >> tempbb <- lapply(data.list, Eh4newv2, weights.m, beta.old)
> >>
> >> Third, here is a no-no
> >>
> >> tempbb <- c()
> >> for (j in 1:n) {
> >>         tempbb <- cbind(tempbb, Eh2new(data.list[[j]], weights.m =
> >> weights.mat))
> >>     }
> >>
> >> That will call cbind over and over, causing a relatively slow memory
> >> re-allocation.  See
> >> (http://pj.freefaculty.org/R/WorkingExamples/stackListItems.R)
> >>
> >> Instead, do this to apply Eh2new to each item in data.list
> >>
> >> tempbbtemp <- lapply(data.list, Eh2new, weights.mat)
> >>
> >> and then smash the results together in one go
> >>
> >> tempbb <- do.call("cbind", tempbbtemp)
> >>
> >>
> >> Fourth, I'm not sure on the matrix algebra. Are you sure you need
> >> solve to get the full inverse of Sig.hat?  Once you start checking
> >> into how estimates are calculated in R, you find that the
> >> paper-and-pencil matrix algebra style of formula is generally frowned
> >> upon. OLS (in lm.fit) doesn't do solve(X'X), it uses a QR
> >> decomposition of matrices.  OR look in MASS package ridge regression
> >> code, where the SVD is used to get the inverse.
> >>
> >> I wish I knew enough about the EM algorithm to gaze at your code and
> >> say "aha, error in line 332", but I'm not.  But if you clean up the
> >> presentation and tighten up the most obvious things, you improve your
> >> chances that somebody who is an expert will exert him/herself to do
> >> it.
> >>
> >> pj
> >>
> >>
> >>>                                                              b follows
> >>> N(0,\psi)  #i.e. bivariate normal
> >>> where b is the latent variable, Z and X are ni*2 design matrices, sigma
> >> is
> >>> the error variance,
> >>> Y are longitudinal data, i.e. there are ni measurements for object i.
> >>> Parameters are \beta, \sigma, \psi; call them \theta.
> >>>
> >>> I wrote a regular EM, the M step is to maximize the log(f(Y,b;\theta))
> >>  by
> >>> taking first order derivatives, setting to 0 and solving the equation.
> >>> The E step involves the evaluation of E step, using Gauss Hermite
> >>> approximation. (10 points)
> >>>
> >>> All are simulated data. X and Z are naive like cbind(rep(1,m),1:m)
> >>> After 200 iterations, the estimated \beta converges to the true value
> >> while
> >>> \sigma and \psi do not. Even after one iteration, the \sigma goes up
> >>> from
> >>> about 10^0 to about 10^1.
> >>> I am confused since the \hat{\beta} requires \sigma and \psi from
> >> previous
> >>> iteration. If something wrong then all estimations should be
> >>> incorrect...
> >>>
> >>> Another question is that I calculated the logf(Y;\theta) to see if it
> >>> increases after updating \theta.
> >>> Seems decreasing.....
> >>>
> >>> I thought the X and Z are linearly dependent would cause some issue but
> >>> I
> >>> also changed the X and Z to some random numbers from normal
> >>> distribution.
> >>>
> >>> I also tried ECM, which converges fast but sigma and psi are not close
> >>> to
> >>> the desired values.
> >>> Is this due to the limitation of some methods that I used?
> >>>
> >>> Can any one give some help? I am stuck for a week. I can send the code
> >>> to
> >>> you.
> >>> First time to raise a question here. Not sure if it is proper to post
> >>> all
> >>> code.
> >>>
> >>
> ##########################################################################
> >>> # the main R script
> >>> n=100
> >>> beta=c(-0.5,1)
> >>> vvar=2   #sigma^2=2
> >>> psi=matrix(c(1,0.2,0.2,1),2,2)
> >>> b.m.true=mvrnorm(n=n,mu=c(0,0),Sigma=psi)  #100*2 matrix, each row is
> >>> the
> >>> b_i
> >>> Xi=cbind(rnorm(7,mean=2,sd=0.5),log(2:8)) #Xi=cbind(rep(1,7),1:7)
> >>> y.m=matrix(NA,nrow=n,ncol=nrow(Xi))   #100*7, each row is a y_i
> >>> Zi=Xi
> >>>
> >>> b.list=as.list(data.frame(t(b.m.true)))
> >>> psi.old=matrix(c(0.5,0.4,0.4,0.5),2,2)      #starting psi, beta and
> >>> var,
> >> not
> >>> exactly the same as the true value
> >>> beta.old=c(-0.3,0.7)
> >>> var.old=1.7
> >>>
> >>> gausspar=gauss.quad(10,kind="hermite",alpha=0,beta=0)
> >>>
> >>> data.list.wob=list()
> >>> for (i in 1:n)
> >>> {
> >>> data.list.wob[[i]]=list(Xi=Xi,yi=y.m[i,],Zi=Zi)
> >>> }
> >>>
> >>> #compute true loglikelihood and initial loglikelihood
> >>> truelog=0
> >>> for (i in 1:length(data.list.wob))
> >>> {
> >>> truelog=truelog+loglike(data.list.wob[[i]],vvar,beta,psi)
> >>> }
> >>>
> >>> truelog
> >>>
> >>> loglikeseq=c()
> >>> loglikeseq[1]=sum(sapply(data.list.wob,loglike))
> >>>
> >>> ECM=F
> >>>
> >>>
> >>> for (m in 1:300)
> >>> {
> >>>
> >>> Sig.hat=Zi%*%psi.old%*%t(Zi)+var.old*diag(nrow(Zi))
> >>> W.hat=psi.old-psi.old%*%t(Zi)%*%solve(Sig.hat)%*%Zi%*%psi.old
> >>>
> >>> Sigb=psi.old-psi.old%*%t(Zi)%*%solve(Sig.hat)%*%Zi%*%psi.old
> >>> det(Sigb)^(-0.5)
> >>>
> >>> Y.minus.X.beta=t(t(y.m)-c(Xi%*%beta.old))
> >>>
> >>
> miu.m=t(apply(Y.minus.X.beta,MARGIN=1,function(s,B=psi.old%*%t(Zi)%*%solve(Sig.hat))
> >>>                                                 {
> >>>                                                 B%*%s
> >>>                                                 }
> >>>                 ))  ### each row is the miu_i
> >>>
> >>>
> >>> tmp1=permutations(length(gausspar$nodes),2,repeats.allowed=T)
> >>> tmp2=c(tmp1)
> >>> a.mat=matrix(gausspar$nodes[tmp2],nrow=nrow(tmp1)) #a1,a1
> >>>
> >>> #a1,a2
> >>>                                                                    #...
> >>>
> >>  #a10,a9
> >>>
> >>  #a10,a10
> >>> a.mat.list=as.list(data.frame(t(a.mat)))
> >>> tmp1=permutations(length(gausspar$weights),2,repeats.allowed=T)
> >>> tmp2=c(tmp1)
> >>> weights.mat=matrix(gausspar$weights[tmp2],nrow=nrow(tmp1)) #w1,w1
> >>>
> >>> #w1,w2
> >>>                                                                    #...
> >>>
> >>  #w10,w9
> >>>
> >>  #w10,w10
> >>> L=chol(solve(W.hat))
> >>> LL=sqrt(2)*solve(L)
> >>> halfb=t(LL%*%t(a.mat))
> >>>
> >>> # each page of b.array is all values of bi_k and bi_j for b_i
> >>> b.list=list()
> >>> for (i in 1:n)
> >>> {
> >>> b.list[[i]]=t(t(halfb)+miu.m[i,])
> >>> }
> >>>
> >>> #generate a list, each page contains Xi,yi,Zi,
> >>> data.list=list()
> >>> for (i in 1:n)
> >>> {
> >>> data.list[[i]]=list(Xi=Xi,yi=y.m[i,],Zi=Zi,b=b.list[[i]])
> >>> }
> >>>
> >>> #update sigma^2
> >>> t1=proc.time()
> >>> tempaa=c()
> >>> tempbb=c()
> >>> for (j in 1:n)
> >>> {
> >>>
> >>
> #tempaa[j]=Eh4new(datai=data.list[[j]],weights.m=weights.mat,beta=beta.old)
> >>>
> >>
> tempbb[j]=Eh4newv2(datai=data.list[[j]],weights.m=weights.mat,beta=beta.old)
> >>>
> >>> }
> >>> var.new=mean(tempbb)
> >>> if (ECM==T){var.old=var.new}
> >>>
> >>>
> >>
> sumXiXi=matrix(rowSums(sapply(data.list,function(s){t(s$Xi)%*%(s$Xi)})),ncol=ncol(Xi))
> >>> tempbb=c()
> >>> for (j in 1:n)
> >>> {
> >>> tempbb=cbind(tempbb,Eh2new(data.list[[j]],weights.m=weights.mat))
> >>> }
> >>> beta.new=solve(sumXiXi)%*%rowSums(tempbb)
> >>>
> >>> if (ECM==T){beta.old=beta.new}
> >>>
> >>> #update psi
> >>> tempcc=array(NA,c(2,2,n))
> >>> sumtempcc=matrix(0,2,2)
> >>> for (j in 1:n)
> >>> {
> >>> tempcc[,,j]=Eh1new(data.list[[j]],weights.m=weights.mat)
> >>> sumtempcc=sumtempcc+tempcc[,,j]
> >>> }
> >>> psi.new=sumtempcc/n
> >>>
> >>> #stop
> >>>
> >>
> if(sum(abs(beta.old-beta.new))+sum(abs(psi.old-psi.new))+sum(abs(var.old-var.new))<0.01)
> >>> {print("converge, stop");break;}
> >>>
> >>> #update
> >>> var.old=var.new
> >>> psi.old=psi.new
> >>> beta.old=beta.new
> >>> loglikeseq[m+1]=sum(sapply(data.list,loglike))
> >>> } # end of M loop
> >>>
> >>>
> ########################################################################
> >>> #function to calculate loglikelihood
> >>>
> >>
> loglike=function(datai=data.list[[i]],vvar=var.old,beta=beta.old,psi=psi.old)
> >>> {
> >>>
> >>
> temp1=-0.5*log(det(vvar*diag(nrow(datai$Zi))+datai$Zi%*%psi%*%t(datai$Zi)))
> >>>
> >>
> temp2=-0.5*t(datai$yi-datai$Xi%*%beta)%*%solve(vvar*diag(nrow(datai$Zi))+datai$Zi%*%psi%*%t(datai$Zi))%*%(datai$yi-datai$Xi%*%beta)
> >>> return(temp1+temp2)
> >>> }
> >>>
> >>> #######################################################################
> >>> #functions to evaluate the conditional expection, saved as Efun v2.R
> >>> #Eh1new=E(bibi')
> >>> #Eh2new=E(X'(y-Zbi))
> >>> #Eh3new=E(bi'Z'Zbi)
> >>> #Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi)
> >>> #Eh5new=E(Xibeta-yi)'Zibi
> >>> #Eh6new=E(bi)
> >>>
> >>> Eh1new=function(datai=data.list[[i]],
> >>>                  weights.m=weights.mat)
> >>> {
> >>> #one way
> >>> #temp=matrix(0,2,2)
> >>> #for (i in 1:nrow(bi))
> >>> #{
> >>> #temp=temp+bi[i,]%*%t(bi[i,])*weights.m[i,1]*weights.m[i,2]
> >>> #}
> >>> #print(temp)
> >>>
> >>> #the other way
> >>> bi=datai$b
> >>> tempb=bi*rep(sqrt(weights.m[,1]*weights.m[,2]),2)   #quadratic b, so
> >>> need
> >>> sqrt
> >>> #deno=sum(weights.m[,1]*weights.m[,2])
> >>>
> >>> return(t(tempb)%*%tempb/pi)
> >>> } # end of Eh1
> >>>
> >>>
> >>> #Eh2new=E(X'(y-Zbi))
> >>> Eh2new=function(datai=data.list[[i]],
> >>>                  weights.m=weights.mat)
> >>> {
> >>> #one way
> >>> #temp=rep(0,2)
> >>> #for (j in 1:nrow(bi))
> >>> #{
> >>>
> >>
> #temp=temp+c(t(datai$Xi)%*%(datai$yi-datai$Zi%*%bi[j,])*weights.m[j,1]*weights.m[j,2])
> >>> #}
> >>> #deno=sum(weights.m[,1]*weights.m[,2])
> >>> #print(temp/deno)
> >>>
> >>> #another way
> >>> bi=datai$b
> >>> tempb=bi*rep(weights.m[,1]*weights.m[,2],2)
> >>>
> >>> tt=t(datai$Xi)%*%datai$yi-t(datai$Xi)%*%datai$Zi%*%colSums(tempb)/pi
> >>> return(c(tt))
> >>> } # end of Eh2
> >>>
> >>>
> >>> #Eh3new=E(b'Z'Zbi)
> >>> Eh3new=function(datai=data.list[[i]],
> >>>                  weights.m=weights.mat)
> >>> {
> >>> #one way
> >>> #deno=sum(weights.m[,1]*weights.m[,2])
> >>> #tempb=bi*rep(sqrt(weights.m[,1]*weights.m[,2]),2)   #quadratic b, so
> >> need
> >>> sqrt
> >>> #sum(apply(datai$Zi%*%t(tempb),MARGIN=2,function(s){sum(s^2)}))/deno
> >>>
> >>> #another way
> >>> bi=datai$b
> >>> tempb=bi*rep(sqrt(weights.m[,1]*weights.m[,2]),2)   #quadratic b, so
> >>> need
> >>> sqrt
> >>>
> >>
> return(sum(sapply(as.list(data.frame(datai$Zi%*%t(tempb))),function(s){sum(s^2)}))/pi)
> >>> }  # end of Eh3
> >>>
> >>> #Eh4new=E(Y-Xibeta-Zibi)'(Y-Xibeta-Zibi)
> >>> Eh4new=function(datai=data.list[[i]],
> >>>                  weights.m=weights.mat,beta=beta.old)
> >>> {
> >>> #one way
> >>> #temp=0
> >>> #bi=datai$b
> >>> #tt=c()
> >>> #for (j in 1:nrow(bi))
> >>> #{
> >>>
> >>
> #tt[j]=sum((datai$yi-datai$Xi%*%beta-datai$Zi%*%bi[j,])^2)*weights.m[j,1]*weights.m[j,2]
> >>>
> >>
> #temp=temp+sum((datai$yi-datai$Xi%*%beta-datai$Zi%*%bi[j,])^2)*weights.m[j,1]*weights.m[j,2]
> >>> #}
> >>> #temp/deno
> >>>
> >>> # another way
> >>> bi=datai$b
> >>>
> >>>
> >>
> tt=sapply(as.list(ata.frame(c(datai$yi-datai$Xi%*%beta)-datai$Zi%*%t(bi))),
> >>>             function(s){sum(s^2)})*(weights.m[,1]*weights.m[,2])
> >>> return(sum(tt)/pi)
> >>> } # end of Eh4
> >>>
> >>>
> >>> Eh4newv2=function(datai=data.list[[i]],
> >>>                  weights.m=weights.mat,beta=beta.old)
> >>> {
> >>> bi=datai$b
> >>> v=weights.m[,1]*weights.m[,2]
> >>> temp=c()
> >>> for (i in 1:length(v))
> >>> {
> >>>
> temp[i]=sum(((datai$yi-datai$Xi%*%beta-datai$Zi%*%bi[i,])*sqrt(v[i]))^2)
> >>> }
> >>> return(sum(temp)/pi)
> >>> } # end of Eh4
> >>>
> >>>
> >>> #Eh5new=E(Xibeta-yi)'Zib
> >>> Eh5new=function(datai=data.list[[i]],
> >>>                  weights.m=weights.mat,beta=beta.old)
> >>> {
> >>> bi=datai$b
> >>> tempb=bi*rep(weights.m[,1]*weights.m[,2],2)
> >>> t(datai$Xi%*%beta-datai$yi)%*%(datai$Zi%*%t(tempb))
> >>> return(sum(t(datai$Xi%*%beta-datai$yi)%*%(datai$Zi%*%t(tempb)))/pi)
> >>> }
> >>>
> >>>
> >>>
> >>> Eh6new=function(datai=data.list[[i]],
> >>>                  weights.m=weights.mat)
> >>> {
> >>> bi=datai$b
> >>> tempw=weights.m[,1]*weights.m[,2]
> >>> for (i in 1:nrow(bi))
> >>> {
> >>> bi[i,]=bi[i,]*tempw[i]
> >>> }
> >>> return(colMeans(bi)/pi)
> >>> } # end of Eh1
> >>>
> >>>
> >>>
> >>>
> >>>
> >>>
> >>>
> >>>
> >>> --
> >>> View this message in context:
> >>
> http://r.789695.n4.nabble.com/EM-algorithm-to-find-MLE-of-coeff-in-mixed-effects-model-tp4635315.html
> >>> Sent from the R help mailing list archive at Nabble.com.
> >>>
> >>> ______________________________________________
> >>> R-help@r-project.org mailing list
> >>> https://stat.ethz.ch/mailman/listinfo/r-help
> >>> PLEASE do read the posting guide
> >> http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html>
> >>> and provide commented, minimal, self-contained, reproducible code.
> >>
> >>
> >>
> >> --
> >> Paul E. Johnson
> >> Professor, Political Science    Assoc. Director
> >> 1541 Lilac Lane, Room 504     Center for Research Methods
> >> University of Kansas               University of Kansas
> >> http://pj.freefaculty.org            http://quant.ku.edu
> >>
> >
> >       [[alternative HTML version deleted]]
> >
> > ______________________________________________
> > R-help@r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide
> > http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html>
> > and provide commented, minimal, self-contained, reproducible code.
>
> ____________________________________________________________
> FREE ONLINE PHOTOSHARING - Share your photos online with your friends and
> family!
> Visit http://www.inbox.com/photosharing to find out more!
>
>
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to