Dear R Users,i am very new to R. I want your help on an issue regarding 
distance matrix and cluster analysis
i had discharge data of 4 rivers(a,b,c,d) in 4 vectors each having 364 values
> dput(qmu)structure(list(a = c(0.26, 0.25, 0.25, 0.25, 0.24, 0.23, 0.22, 0.21, 
> 0.21, 0.21, 0.2, 0.19, 0.19, 0.19, 0.19, 0.18, 0.18, 0.18, 0.17, 0.17, 0.17, 
> 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 
> 0.18, 0.19, 0.19, 0.19, 0.2, 0.21, 0.21, 0.21, 0.21, 0.21, 0.21, 0.19, 0.19, 
> 0.18, 0.17, 0.17, 0.15, 0.18, 0.2, 0.21, 0.2, 0.19, 0.19, 0.19, 0.2, 0.24, 
> 0.3, 0.3, 0.3, 0.32, 0.34, 0.42, 0.46, 0.48, 0.67, 0.82, 0.79, 0.73, 0.69, 
> 0.67, 0.67, 0.66, 0.64, 0.61, 0.58, 0.56, 0.55, 0.55, 0.55, 0.52, 0.49, 0.48, 
> 0.51, 0.53, 0.52, 0.49, 0.48, 0.48, 0.46, 0.46, 0.44, 0.43, 0.43, 0.41, 0.48, 
> 0.55, 0.57, 0.55, 0.56, 0.6, 0.64, 0.67, 0.73, 0.84, 0.94, 1.09, 1.24, 1.28, 
> 1.19, 1.11, 1, 0.92, 0.86, 0.79, 0.76, 0.76, 0.76, 0.76, 0.92, 0.98, 1.03, 
> 1.03, 1.03, 1.03, 1.07, 1.11, 1.24, 1.44, 2.12, 3.26, 15, 9.45, 5.07, 4.59, 
> 3.5, 2.84, 2.54, 2.57, 3.01, 2.32, 2.32, 2.97, 2.92, 3.88, 4.76, 5.99, 3.74, 
> 2.92, 2.65, 2.57, 2.97, 3.4, 4.13, 4.31, 3.89, 3.45, 3.01, 2.88, 2!
 .5, 2.29, 2.39, 2.25, 2.02, 1.87, 1.87, 2.54, 2.69, 2.76, 3.18, 3.74, 4.59, 
4.76, 4.36, 6.56, 5.07, 3.84, 3.55, 3.84, 3.84, 5.49, 5.32, 3.74, 3.31, 3.4, 
3.26, 3.09, 2.69, 2.54, 2.46, 2.39, 2.25, 2.22, 2.22, 2.25, 2.29, 2.22, 2.18, 
2.05, 2.18, 2.39, 2.18, 2.29, 2.11, 1.81, 1.6, 1.44, 1.41, 1.32, 1.37, 1.37, 
1.65, 2.31, 2.25, 1.68, 1.41, 1.26, 1.15, 3.28, 1.93, 1.6, 1.53, 1.28, 1.13, 
1.03, 1.03, 1.03, 1.03, 1, 0.96, 0.92, 0.87, 0.82, 0.79, 0.76, 0.73, 0.7, 0.67, 
0.64, 0.64, 0.61, 0.61, 0.61, 1.76, 1.19, 1.24, 1.37, 1.68, 2.39, 2.05, 1.78, 
1.58, 1.41, 1.39, 1.5, 1.41, 1.32, 1.19, 1.11, 1.02, 1.07, 4.57, 1.96, 1.68, 
1.5, 1.37, 1.24, 1.11, 1.03, 0.96, 0.94, 2.93, 2.88, 2.92, 2.76, 2.02, 1.71, 
1.5, 1.37, 1.22, 1.09, 1, 0.94, 0.87, 0.81, 0.76, 0.73, 0.7, 0.67, 0.61, 0.58, 
0.57, 0.55, 0.53, 0.51, 0.48, 0.47, 0.44, 0.43, 0.43, 0.41, 0.41, 0.38, 0.4, 
0.4, 0.42, 0.42, 0.41, 0.46, 0.53, 0.55, 0.52, 0.49, 0.51, 0.53, 0.55, 0.7, 
1.03, 1.03, 1.17, 1.24, 1.19, 1.11, 1.03, 0.98, 0.92, 0.84,!
  0.79, 0.75, 0.7, 0.67, 0.61, 0.58, 0.56, 0.56, 0.55, 0.53, 0.51, 0.48
, 0.46, 0.43, 0.41, 0.38, 0.37, 0.35, 0.34, 0.32, 0.31, 0.3, 0.29, 0.28, 0.27, 
0.25, 0.26, 0.24, 0.23, 0.22, 0.22, 0.21, 0.21, 0.21), b = c(0.19, 0.19, 0.19, 
0.18, 0.18, 0.18, 0.17, 0.17, 0.17, 0.17, 0.16, 0.17, 0.17, 0.15, 0.15, 0.15, 
0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 
0.15, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 
0.14, 0.14, 0.14, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.16, 0.16, 0.17, 
0.17, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.19, 0.21, 0.21, 0.21, 
0.22, 0.23, 0.24, 0.24, 0.23, 0.24, 0.24, 0.25, 0.25, 0.25, 0.28, 0.29, 0.29, 
0.3, 0.31, 0.31, 0.34, 0.41, 0.46, 0.51, 0.57, 0.61, 0.64, 0.67, 0.7, 0.76, 
0.82, 0.86, 1.05, 1.24, 1.05, 0.94, 0.92, 0.9, 0.86, 0.82, 0.76, 0.76, 0.76, 
0.78, 0.82, 0.9, 1.07, 1.76, 3.13, 3.64, 3.45, 3.01, 2.39, 2.02, 1.87, 2.11, 
2.02, 1.78, 1.63, 1.53, 1.63, 4.84, 12.5, 8.11, 3.89, 2.73, 2.11, 1.96, 3.17, 
2.65, 2.54, 3.01, 3.31, 3.6, 3.36, 2.76, 2.39, 2.11, 2.!
 25, 2.08, 1.99, 2.11, 2.36, 3.13, 7.16, 5.39, 5.52, 5.32, 4.25, 3.45, 3.26, 
3.18, 3.74, 4.35, 5.79, 5.45, 4.42, 3.84, 3.36, 2.84, 2.39, 3.84, 3.18, 3.22, 
2.97, 2.73, 2.65, 2.92, 4.33, 3.01, 3.01, 3.26, 3.09, 3.6, 3.64, 4.05, 4.25, 
4.48, 3.69, 3.74, 3.6, 3.18, 2.76, 4.11, 2.92, 2.69, 2.73, 2.69, 3.93, 2.69, 
2.18, 2.52, 2.69, 1.99, 2.57, 1.81, 1.55, 1.44, 1.37, 1.28, 1.19, 1.19, 1.03, 
1.03, 1, 0.94, 0.89, 0.87, 0.86, 0.86, 2.3, 1.55, 1.19, 1.11, 1.5, 1.39, 1.22, 
1.24, 1.07, 1.02, 0.96, 0.92, 1.34, 1.15, 1.03, 2.06, 1.76, 1.3, 1.15, 1.05, 
0.98, 0.92, 0.89, 0.84, 0.81, 0.76, 0.73, 1.59, 5.2, 3.01, 2.05, 1.65, 1.68, 
5.29, 2.73, 1.96, 1.6, 1.41, 1.28, 1.15, 1.11, 1.13, 1.09, 1.03, 6.99, 10.6, 
5.39, 3.45, 2.5, 1.87, 1.68, 1.78, 1.53, 1.41, 1.3, 1.17, 1.05, 0.98, 0.92, 
0.9, 0.87, 0.86, 0.82, 0.78, 0.75, 0.72, 0.67, 0.82, 1.6, 0.89, 0.94, 0.96, 
0.92, 0.87, 0.82, 0.79, 0.75, 0.7, 0.67, 0.64, 0.61, 0.58, 0.56, 0.53, 0.51, 
0.48, 0.47, 0.46, 0.43, 0.41, 0.41, 0.68, 16.3, 17.2, 6.05, 3.6!
 9, 2.92, 2.25, 1.87, 1.63, 1.46, 1.32, 1.19, 1.07, 1, 0.94, 0.89, 0.87
, 0.86, 0.81, 0.76, 0.73, 0.7, 0.7, 0.7, 0.7, 0.7, 0.67, 0.67, 0.66, 0.64, 
0.61, 0.58, 0.56, 0.55, 0.53, 0.51, 0.48, 0.46, 0.44, 0.43, 0.43, 0.41, 0.4, 
0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.32, 0.31, 0.31, 0.3, 0.3, 0.29, 0.29, 
0.28, 0.27, 0.27), c = c(0.27, 0.25, 0.25, 0.25, 0.24, 0.24, 0.23, 0.22, 0.22, 
0.21, 0.21, 0.21, 0.21, 0.21, 0.2, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 
0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 
0.18, 0.18, 0.18, 0.18, 0.17, 0.17, 0.17, 0.16, 0.15, 0.15, 0.15, 0.14, 0.14, 
0.14, 0.14, 0.13, 0.13, 0.13, 0.13, 0.13, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 
0.12, 0.12, 0.12, 0.12, 0.12, 0.13, 0.14, 0.15, 0.15, 0.16, 0.17, 0.18, 0.2, 
0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.32, 0.31, 0.32, 0.32, 0.32, 0.32, 0.32, 
0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.3, 0.28, 0.28, 0.3, 0.33, 0.35, 0.4, 
0.43, 0.47, 0.52, 0.52, 0.51, 0.53, 0.56, 0.58, 0.58, 0.55, 0.51, 0.47, 0.47, 
0.47, 0.46, 0.48, 0.51, 0.56, 0.61, 0.73, 1, 1.34, 1.73, 8.71, !
 9.98, 11.1, 5.92, 3.8, 2.84, 2.69, 3.35, 3.89, 4.8, 5.79, 5.2, 4.36, 3.69, 
3.5, 2.92, 2.5, 2.32, 2.65, 2.92, 2.8, 3.94, 5.39, 3.55, 2.92, 4.65, 6.15, 
4.03, 2.88, 2.39, 2.08, 1.93, 1.81, 1.55, 1.34, 1.44, 2.29, 2.92, 2.92, 2.73, 
2.57, 2.73, 3.01, 3.18, 3.09, 6.32, 10.9, 4.25, 3.22, 2.92, 7.77, 20.8, 6.27, 
3.84, 3.01, 2.69, 2.39, 2.32, 2.32, 2.32, 2.15, 2.32, 2.32, 2.57, 3.15, 2.61, 
2.05, 1.76, 1.53, 1.65, 1.71, 1.73, 1.63, 1.76, 1.87, 1.9, 1.84, 1.81, 1.84, 
1.73, 2.08, 1.65, 1.58, 1.5, 1.41, 1.37, 1.28, 1.32, 1.19, 1.05, 1.09, 1.09, 1, 
0.98, 0.94, 0.92, 0.9, 0.87, 0.86, 0.82, 0.79, 0.79, 0.79, 1.09, 1.05, 1.05, 
1.03, 0.96, 0.9, 0.82, 0.79, 0.76, 0.76, 0.73, 0.72, 0.67, 0.63, 0.58, 0.57, 
0.55, 0.52, 0.51, 0.51, 0.49, 0.48, 0.49, 0.49, 0.51, 0.51, 0.51, 0.51, 0.51, 
0.51, 1.33, 0.92, 0.76, 0.76, 1.16, 1.39, 1.34, 1.26, 1.17, 1.07, 1, 0.92, 
0.86, 0.81, 0.76, 0.72, 0.67, 0.64, 0.61, 0.58, 0.56, 0.53, 0.51, 0.49, 0.48, 
0.46, 0.43, 0.43, 0.43, 0.42, 0.41, 0.38, 0.36, 0.34, 0.32, 0.!
 32, 0.32, 0.31, 0.31, 0.29, 0.28, 0.28, 0.27, 0.27, 0.27, 0.26, 0.26, 
0.25, 0.26, 0.25, 0.25, 0.24, 0.23, 0.22, 0.21, 0.19, 0.19, 0.19, 0.18, 0.18, 
0.21, 0.4, 0.41, 0.43, 0.43, 0.43, 0.44, 0.46, 0.49, 0.51, 0.51, 0.55, 0.56, 
0.53, 0.51, 0.48, 0.46, 0.42, 0.41, 0.41, 0.38, 0.35, 0.36, 0.34, 0.34, 0.32, 
0.31, 0.29, 0.27, 0.26, 0.24, 0.24, 0.21, 0.19, 0.19, 0.18, 0.18, 0.18, 0.17, 
0.16, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.14, 0.14),     d = c(0.13, 0.13, 
0.13, 0.13, 0.12, 0.12, 0.13, 0.13, 0.12,     0.12, 0.12, 0.12, 0.12, 0.12, 
0.12, 0.12, 0.12, 0.12, 0.12,     0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 
0.12, 0.12, 0.12,     0.12, 0.13, 0.13, 0.13, 0.16, 0.2, 0.19, 0.17, 0.17, 
0.16,     0.16, 0.16, 0.16, 0.18, 0.17, 0.16, 0.16, 0.16, 0.16, 0.15,     0.15, 
0.14, 0.13, 0.13, 0.16, 0.15, 0.15, 0.14, 0.14, 0.14,     0.14, 0.14, 0.14, 
0.14, 0.14, 0.14, 0.14, 0.13, 0.13, 0.13,     0.12, 0.12, 0.12, 0.12, 0.11, 
0.12, 0.13, 0.14, 0.16, 0.16,     0.17, 0.23, 0.28, 0.28, 0.31, 0.32, 0.37, 
0.41, 0.37, 0.36,     0.34, 0.39, 0.4, 0.37, 0.34, 0.33, 0.32, 0.2!
 9, 0.28, 0.28,     0.28, 0.28, 0.28, 0.26, 0.27, 0.28, 0.28, 0.36, 0.52, 0.63, 
    1.12, 1.02, 1.19, 1.51, 1.72, 1.97, 3.11, 2.77, 2.19, 1.86,     1.62, 1.39, 
1.16, 1.04, 0.96, 0.91, 0.9, 0.93, 1.21, 1.31,     1.46, 1.59, 1.46, 1.49, 
1.54, 1.62, 1.83, 2.14, 2.22, 2.16,     2.14, 2.33, 2.47, 2.14, 1.97, 2, 2.53, 
2.81, 2.85, 2.81,     2.92, 3, 3.21, 3.43, 3.3, 3.17, 2.4, 2.02, 2.66, 3.56, 
8.31,     5.92, 5.99, 5.92, 4.93, 4.98, 5.19, 4.41, 5.57, 4.87, 4.04,     3.79, 
3.61, 3.89, 3.7, 3.66, 3.7, 3.89, 4.47, 7.77, 5.44,     3.89, 3.17, 2.92, 2.62, 
2.26, 2.14, 2.16, 2.14, 2.16, 2.11,     1.97, 1.89, 1.83, 1.86, 1.97, 1.83, 
1.57, 1.29, 1.14, 1.04,     0.98, 1, 0.98, 0.96, 1, 1.39, 1.21, 1.1, 1.04, 
0.98, 0.94,     0.93, 0.93, 0.93, 0.9, 0.9, 0.9, 0.88, 0.86, 0.83, 0.83,     
0.83, 0.8, 0.78, 0.74, 0.69, 0.64, 0.61, 0.6, 0.61, 0.6,     1.99, 2.3, 1.54, 
1.54, 1.44, 1.29, 1.14, 1.04, 0.96, 0.96,     1.08, 1.1, 1.08, 1.02, 0.94, 
0.91, 0.86, 0.8, 0.77, 0.7,     0.64, 0.61, 3.28, 1.62, 1!
 .64, 1.49, 1.39, 1.29, 1.14, 1.04,     0.96, 0.9, 0.85, 0.78, 0.74, 0.
7, 0.67, 0.63, 0.58, 0.55,     0.52, 0.51, 0.49, 0.48, 0.45, 0.44, 0.43, 0.41, 
0.4, 1.29,     11.6, 14, 4.68, 2.92, 2.19, 1.78, 1.54, 1.41, 1.29, 1.14,     
1.04, 0.98, 0.94, 0.9, 0.83, 0.78, 0.74, 0.67, 0.64, 0.61,     0.58, 0.55, 
0.51, 0.46, 0.46, 0.45, 0.44, 0.44, 0.43, 0.41,     0.4, 0.39, 0.39, 0.39, 
0.39, 0.36, 0.36, 0.36, 0.36, 0.36,     0.35, 0.35, 0.35, 0.34, 0.36, 0.35, 
0.34, 0.34, 0.34, 0.34,     0.34, 0.34, 0.35, 0.35, 0.36, 0.36, 0.37, 0.36, 
0.36, 0.35,     0.34, 0.34, 0.32, 0.32, 0.32, 0.31, 0.31, 0.31, 0.31, 0.31,     
0.31, 0.29, 0.28, 0.26, 0.25, 0.24, 0.22, 0.2, 0.19, 0.18,     0.17, 0.16, 
0.15)), .Names = c("a", "b", "c", "d"), class = "data.frame", row.names = c(NA, 
-364L))

by using "as.matrix", i converted by data into a matrix. Now, I want to create 
a distance matrix. My data as shown above contains 364 rows and 4 columns. I 
have to create distance matrix based on the values of 2nd column.
secondly, based on this distance matrix i would like to do "hclustering", to 
see which of the rivers have similar discharge patterns. more precisely, i need 
to see river(a,b,c,d) splitted in clusters with river having similar discharge 
patterns in one cluster.
thnx in advanceeliza botto                                        
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to