Hello, When I run the following glm model:
modelresult=glm(CID~WS+SS+DV+DS, data=kimu, family=binomial) I get the following warning messages: 1: glm.fit: algorithm did not converge 2: glm.fit: fitted probabilities numerically 0 or 1 occurred What I am trying to do is model my response variable (CID: correct bird identification) as a function of the predictor variables weather state (WS), sea state (SS), distance from the vessel (DV) and duration of the sighting (DS). I defined both sea state and weather state as factors with three levels (0, 1, or 2). Distance of the vessel values are 100, 80, 60, 40, and 20. Duration of the sighting ranges from 0 to 58 seconds. The output R is giving me is: Deviance Residuals: Min 1Q Median 3Q Max -3.562e-05 -2.100e-08 2.100e-08 2.100e-08 3.632e-05 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -2.000e+02 1.067e+06 0.000 1.000 WSf1 7.744e+01 9.086e+04 0.001 0.999 WSf2 1.285e+01 6.199e+04 0.000 1.000 SSf1 -1.042e+02 1.683e+05 -0.001 1.000 SSf2 -1.859e+02 1.432e+05 -0.001 0.999 DV 6.770e-01 9.394e+03 0.000 1.000 DS 9.822e+00 1.884e+04 0.001 1.000 What do the warning messages mean? Can I still use coefficient estimates and standard error values? Thank you! [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.