Hey, all. I had a quick question about fitting new glm values and then looking at the error around them. I'm working with a glm using a Gamma distribution and a log link with two types of treatments. However, when I then look at the predicted values for each category, I find for the one that is close to 0, the error (using se.fit=T with predicted) actually makes it overlap 0. This is not possible, as non-0 values have no meaning.
Am I missing something in the interpretation? I'm sure I am. Is there are better way to plot this that is accurate? Below is some sample code for an example problem. Note that the error for the value for category a (plotted at the end) does cross 0. Note: this is a simple example. The model I'm using has covariates, etc, but, I wanted to work out the correct method for the simple example so that I could take it back to my more complex model. Thanks! #data x<-as.factor(c(rep("a",4),rep("b",4))) y<-c(0.5,2,0.3,1.2,32.6,43,23.8,2.92) #plot the raw data plot(y ~ as.factor(x)) #fit a glm my.glm<-glm(y ~ x, family=Gamma(link=log)) #get predicted values and their error a.fit<-predict(my.glm, data.frame(x="a"), se.fit=T) b.fit<-predict(my.glm, data.frame(x="b"), se.fit=T) #visualize it and see the SE cross 0 plot(1:2,c(a.fit$fit,b.fit$fit), pch=19, ylim=c(-2,4)) segments(1:2, c(a.fit$fit-a.fit$se.fit, b.fit$fit-b.fit$se.fit), 1:2, c(a.fit$fit+a.fit$se.fit, b.fit$fit+b.fit$se.fit)) lines(0:3,rep(0,4), lty=2) -Jarrett ---------------------------------------- Jarrett Byrnes Population Biology Graduate Group, UC Davis Bodega Marine Lab 707-875-1969 http://www-eve.ucdavis.edu/stachowicz/byrnes.shtml [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.