Thanks!

On Mon, Mar 25, 2013 at 6:25 PM, Joshua Wiley <jwiley.ps...@gmail.com>wrote:

> Yep that's exactly right! :)
>
> On Mon, Mar 25, 2013 at 6:22 PM, Antonio P. Ramos
> <ramos.grad.stud...@gmail.com> wrote:
> > Just to clarify: I should include wealth - the categorical variable - as
> a
> > fixed effects *and* within the smooth using the argument "by". It that
> > correct? thanks a bunch
> >
> >
> > On Mon, Mar 25, 2013 at 6:18 PM, Joshua Wiley <jwiley.ps...@gmail.com>
> > wrote:
> >>
> >> Hi Antonio,
> >>
> >> If wealth is a factor variable, you should include the main effect in
> >> the model, as the smooths will be centered.
> >>
> >> Cheers,
> >>
> >> Josh
> >>
> >>
> >>
> >> On Mon, Mar 25, 2013 at 6:09 PM, Antonio P. Ramos
> >> <ramos.grad.stud...@gmail.com> wrote:
> >> > Hi all,
> >> >
> >> > I am not sure how to handle interactions with categorical predictors
> in
> >> > the
> >> > GAM models. For example what is the different between these bellow two
> >> > models. Tests are indicating that they are different but their
> >> > predictions
> >> > are essentially the same.
> >> >
> >> > Thanks a bunch,
> >> >
> >> >> gam.1 <- gam(mortality.under.2~ maternal_age_c+ I(maternal_age_c^2)+
> >> > +                s(birth_year,by=wealth) +
> >> > +                + wealth + sex +
> >> > +                residence+ maternal_educ + birth_order,
> >> > +              ,data=rwanda2,family="binomial")
> >> >>
> >> >> gam.2 <- gam(mortality.under.2~ maternal_age_c+ I(maternal_age_c^2)+
> >> > +                s(birth_year,by=wealth) +
> >> > +                 + sex +
> >> > +                residence+ maternal_educ + birth_order,
> >> > +              ,data=rwanda2,family="binomial")
> >> >>
> >> >> anova(gam.1,gam.2,test="Chi")
> >> > Analysis of Deviance Table
> >> >
> >> > Model 1: mortality.under.2 ~ maternal_age_c + I(maternal_age_c^2) +
> >> > s(birth_year,
> >> >     by = wealth) + +wealth + sex + residence + maternal_educ +
> >> >     birth_order
> >> > Model 2: mortality.under.2 ~ maternal_age_c + I(maternal_age_c^2) +
> >> > s(birth_year,
> >> >     by = wealth) + +sex + residence + maternal_educ + birth_order
> >> >   Resid. Df Resid. Dev      Df Deviance  Pr(>Chi)
> >> > 1     28986      24175
> >> > 2     28989      24196 -3.6952  -21.378 0.0001938 ***
> >> > ---
> >> > Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> >> >> str(rwanda2)
> >> > 'data.frame': 29027 obs. of  18 variables:
> >> >  $ CASEID            : Factor w/ 10718 levels "        1  5  2",..:
> 289
> >> > 2243 7475 9982 6689 10137 7426 428 8415 10426 ...
> >> >  $ mortality.under.2 : int  0 1 0 0 0 0 0 0 1 0 ...
> >> >  $ maternal_age_disct: Factor w/ 3 levels "-25","+35","25-35": 1 1 1
> 1 1
> >> > 1
> >> > 3 1 3 1 ...
> >> >  $ maternal_age      : int  18 21 21 23 21 22 26 18 27 21 ...
> >> >  $ time              : int  3 3 3 3 3 3 3 3 3 3 ...
> >> >  $ child_mortality   : num  0.232 0.232 0.232 0.232 0.232 ...
> >> >  $ democracy         : Factor w/ 1 level "dictatorship": 1 1 1 1 1 1
> 1 1
> >> > 1
> >> > 1 ...
> >> >  $ wealth            : Factor w/ 5 levels "Lowest quintile",..: 2 4 1
> 4
> >> > 5 1
> >> > 4 1 4 5 ...
> >> >  $ birth_year        : int  1970 1970 1970 1970 1970 1970 1970 1970
> 1970
> >> > 1970 ...
> >> >  $ residence         : Factor w/ 2 levels "Rural","Urban": 1 1 1 1 2
> 1 1
> >> > 1
> >> > 1 2 ...
> >> >  $ birth_order       : int  1 2 2 5 1 1 3 1 2 2 ...
> >> >  $ maternal_educ     : Factor w/ 4 levels "Higher","No education",..:
> 3
> >> > 2 2
> >> > 3 4 2 3 2 2 2 ...
> >> >  $ sex               : Factor w/ 2 levels "Female","Male": 1 1 2 2 1
> 1 2
> >> > 2
> >> > 2 2 ...
> >> >  $ quinquennium      : Factor w/ 7 levels "00-5's","70-4",..: 2 2 2 2
> 2
> >> > 2 2
> >> > 2 2 2 ...
> >> >  $ time.1            : int  3 3 3 3 3 3 3 3 3 3 ...
> >> >  $ new_time          : int  0 0 0 0 0 0 0 0 0 0 ...
> >> >  $ maternal_age_c    : num  -6.12 -3.12 -3.12 -1.12 -3.12 ...
> >> >  $ birth_year_c      : num  -14.8 -14.8 -14.8 -14.8 -14.8 ...
> >> >
> >> >         [[alternative HTML version deleted]]
> >> >
> >> >
> >> > ______________________________________________
> >> > R-help@r-project.org mailing list
> >> > https://stat.ethz.ch/mailman/listinfo/r-help
> >> > PLEASE do read the posting guide
> >> > http://www.R-project.org/posting-guide.html
> >> > and provide commented, minimal, self-contained, reproducible code.
> >> >
> >>
> >>
> >>
> >> --
> >> Joshua Wiley
> >> Ph.D. Student, Health Psychology
> >> University of California, Los Angeles
> >> http://joshuawiley.com/
> >> Senior Analyst - Elkhart Group Ltd.
> >> http://elkhartgroup.com
> >
> >
>
>
>
> --
> Joshua Wiley
> Ph.D. Student, Health Psychology
> University of California, Los Angeles
> http://joshuawiley.com/
> Senior Analyst - Elkhart Group Ltd.
> http://elkhartgroup.com
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to