Dear all, I have a sample with 920 observations. I want to create a loop which takes 300 of these observations for the prediction and the rest to estimate the model.
My idea was to create something like this: cs.training.dat <- read.table... cs.training.dat_sub1 <- subset(cs.training.dat, Income>10) cs.training.dat_sub2 <- subset(cs.training.dat_sub1, Dept.Ratio<=1) cs.training.dat_sub3 <- subset(cs.training.dat_sub2, Credit.Limit.Ratio<=1) for (i in 1:500){ y.2 <- cs.training.dat_sub3$y[1+[i]:300+[i]] y.1 <- cs.training.dat_sub3$y[-(1+[i]:300+[i])] NTimes.60DaysLate.2 <- (cs.training.dat_sub3$NTimes.60DaysLate[1+[i]:300+[i]]) NTimes.60DaysLate.1 <- (cs.training.dat_sub3$NTimes.60DaysLate[-(1+[i]:300+[i])]) Credit.Limit.Ratio.2 <- (cs.training.dat_sub3$Credit.Limit.Ratio[1+[i]:300+[i]]) Credit.Limit.Ratio.1 <- (cs.training.dat_sub3$Credit.Limit.Ratio[-(1+[i]:300+[i])]) Dept.Ratio.2 <- (cs.training.dat_sub3$Dept.Ratio[1+[i]:300+[i]]) Dept.Ratio.1 <- (cs.training.dat_sub3$Dept.Ratio[-(1+[i]:300+[i])]) Numb.Dependents.2 <- (cs.training.dat_sub3$Numb.Dependents[1+[i]:300+[i]]) Numb.Dependents.1 <- (cs.training.dat_sub3$Numb.Dependents[-(1+[i]:300+[i]]) X.1[i] <- cbind(NTimes.60DaysLate.1, Credit.Limit.Ratio.1, Dept.Ratio.1, Numb.Dependents.1) X.2[i] <- cbind(NTimes.60DaysLate.2, Credit.Limit.Ratio.2, Dept.Ratio.2, Numb.Dependents.2) } However, I get error massages because R cannot read 1+[i] ... Do you have any idea how I can create 500 different pairs from my one sample where one variabe contains 300 observation and the other the rest? Thank you very much in advance. -- View this message in context: http://r.789695.n4.nabble.com/prediction-in-a-loop-with-only-one-sample-tp4666819.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.