Dear R-helpers,

I compared various programs for cubic spline smoothing, and it appeared 
that smooth.spline ( stats version 3.0.1) seems to behave surprisingly. 
For enough long series and low values of lambda (or spar), the results 
of smooth.spline seem to be different from those of sreg ( package 
fields version 6.8), Octave (=MATLAB) or SAS. These three last softwares 
always gave the same results.

Here is a script which shows the problem:

#generate a random series of 2000 values

set.seed(1)
MyData=data.frame(Time=1:2000,Val=runif(1000))

#calculate the sreg cubic smoothing spline with a given lambda parameter 
(0.006 here)

library(fields)

SplineFields=sreg(MyData$Time,MyData$Val,lambda=0.006)

#keep the minimim fitted value (or any other from a long list of 
possible values)

ValMin=min(SplineFields$fitted.values)
TimeValMin=which.min(SplineFields$fitted.values)

#calculations of all possible fitted values at the TimeValMin point with 
smooth.spline,
#varying the spar parameter in the range of all its possible values

SplineRValMin=sapply(seq(-0.5,2.5,0.1),
   function(Ispar) {
     SplineR=smooth.spline(MyData$Time,MyData$Val,spar=Ispar)
     SplineR$y[TimeValMin]})

#None of the smooth.spline fitted values reach the one calculated with 
sreg !

Lim=range(ValMin,SplineRValMin)

#smooth.spline values
plot(seq(-0.5,2.5,0.1),SplineRValMin,type="l",ylim=Lim)

#sreg value
abline(h=ValMin)

I hope there is no real problem here, but only some misunderstanding 
from my side, because cubic splines are very often used. Best regards,

Jean-Luc Dupouey

-- 
INRA-Nancy University
Forest Ecology and Ecophysiology Unit
F-54280 Champenoux
mail:dupo...@nancy.inra.fr


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to